Headphones including a sound output unit, a processing unit, a memory unit, a lighting unit, and a detection unit are provided. The sound output unit is configured to output sound. The memory unit is configured to store a program. The lighting unit is configured to emit light in response to a signal supplied from the processing unit. The detection unit is configured to obtain detection information and supply a detection signal corresponding to the detection information to the processing unit. The processing unit is configured to read out the program, carry out an operation using the detection signal and the program, and supply a signal corresponding to an operation result to the lighting unit.
A pluggable aggregation module adapted to be plugged into a network device of an optical network, said pluggable aggregation module comprising optical frontends configured to connect said pluggable aggregation module with a corresponding number of modules to exchange optical signals via optical fibres in legacy signal formats; and an electrical conversion circuit configured to convert the legacy signal formats to an internal signal format used by said network device.
A device receives an analog voltage signal over a single physical electrical connection. The analog voltage signal can be converted into a digital value which can then be correlated to (i) an indication of a connection state of the primary device, and (ii) information about another device (or set of devices) which is connected to the device.
Technology for generating camera viewfinder displays for camera people video recording/broadcasting live events such as sporting events, where the viewfinder displays include overlays that include: (i) priority values for objects shown on and/or off the live event view shown in viewfinder display; (ii) identifications of objects that are outside the viewfinder display; and/or (iii) direction to the locations of objects that are outside the viewfinder display. In response to these indications in the overlay, the cameraperson may move the camera to better capture a high priority object and/or capture an object that was outside the viewfinder display.
A method, system, mobile device, apparatus and computer program product are provided for accurately determining whether one or more rights objects associated with a mobile device are valid. In particular, a secure time source (e.g., DRM clock or time) may be maintained by the mobile device and used to check the validity of the one or more rights objects. In order to ensure that the secure time source or clock remains accurate, the mobile device may update the secure time source by regularly requesting and receiving the DVB-H network time from a DVB-H network entity. Because the DVB-H network time is secure, accurate and readily accessible, it provides an ideal tool for correcting possible drift in the mobile device's secure time source.
A system comprises an encoder configured to compress a point cloud comprising a plurality of points each point comprising spatial information for the point. The encoder is configured to sub-sample the points and determine subdivision locations for the subsampled points. Also, the encoder is configured to determine, for respective subdivision location, if a point is to be included, not included, or relocated relative to the subdivision location. The encoder encodes spatial information for the sub-sampled points and encodes subdivision location point inclusion/relocation information to generate a compressed point cloud. A decoder recreates an original or near replica of an original point cloud based on the spatial information and the subdivision location inclusion/relocation information included in the compressed point cloud.
A motion vector derivation unit includes a comparison unit for comparing a parameter TR1 for a reference vector with a predetermined value to determine whether it exceeds the predetermined value or not; a switching unit for switching selection between the maximum value of a pre-stored parameter TR and the parameter TR1 according to the comparison result by the comparison unit; a multiplier parameter table (for multipliers); and a multiplier parameter table (for divisors) for associating the parameter TR1 with a value approximate to the inverse value (1/TR1) of this parameter TR1.
A motion vector derivation unit includes a comparison unit for comparing a parameter TR1 for a reference vector with a predetermined value to determine whether it exceeds the predetermined value or not; a switching unit for switching selection between the maximum value of a pre-stored parameter TR and the parameter TR1 according to the comparison result by the comparison unit; a multiplier parameter table (for multipliers); and a multiplier parameter table (for divisors) for associating the parameter TR1 with a value approximate to the inverse value (1/TR1) of this parameter TR1.
The entropy coding of a current part of a predetermined entropy slice is based on, not only, the respective probability estimations of the predetermined entropy slice as adapted using the previously coded part of the predetermined entropy slice, but also probability estimations as used in the entropy coding of a spatially neighboring, in entropy slice order preceding entropy slice at a neighboring part thereof. Thereby, the probability estimations used in entropy coding are adapted to the actual symbol statistics more closely, thereby lowering the coding efficiency decrease normally caused by lower-delay concepts. Temporal interrelationships are exploited additionally or alternatively.
A system and method for scalable video coding that includes base layer having lower resolution encoding, enhanced layer having higher resolution encoding and the data transferring between two layers. The system and method provides several methods to reduce bandwidth of inter-layer transfers while at the same time reducing memory requirements. Due to less memory access, the system clock frequency can be lowered so that system power consumption is lowered as well. The system avoids having prediction data from base layer to enhanced layer to be up-sampled for matching resolution in the enhanced layer as transferring up-sampled data can impose a big burden on memory bandwidth.
An optical flow reference frame portion (e.g., a block or an entire frame) is generated that can be used for inter prediction of blocks of a current frame in a video sequence. A forward reference frame and a backward reference frame are used in an optical flow estimation that produces a respective motion field for pixels of a current frame. The motion fields are used to warp some or all pixels of the reference frames to the pixels of the current frame. The warped reference frame pixels are blended to form the optical flow reference frame portion. The inter prediction may be performed as part of encoding or decoding portions of the current frame.
A video bitstream is decoded by decoding, in a slice header associated with a picture, a first syntax element indicating a number of entropy slices defining a first slice. Each slice contains plural largest coding units (LCUs). A second syntax element indicates an offset with an index, and a third syntax element indicates a slice type of the first slice. When the third syntax element indicates a B slice, a flag indicating one of two coding context initialization methods to be used is decoded. When the third syntax element indicates a P slice, the coding context is initialized using one of two initialization methods. When the third syntax element indicates an I slice, the coding context is initialized using a third initialization method.
Approaches to robust encoding and decoding of escape-coded pixels in a palette mode are described. For example, sample values of escape-coded pixels in palette mode are encoded/decoded using a binarization process that depends on a constant value of quantization parameter (“QP”) for the sample values. Or, as another example, sample values of escape-coded pixels in palette mode are encoded/decoded using a binarization process that depends on sample depth for the sample values. Or, as still another example, sample values of escape-coded pixels in palette mode are encoded/decoding using a binarization process that depends on some other fixed rule. In example implementations, these approaches avoid dependencies on unit-level QP values when parsing the sample values of escape-coded pixels, which can make encoding/decoding more robust to data loss.
Methods of encoding and decoding for video data are described in which multi-level significance maps are used in the encoding and decoding processes. The significant-coefficient flags that form the significance map are grouped into contiguous groups, and a significant-coefficient-group flag signifies for each group whether that group contains no non-zero significant-coefficient flags. If there are no non-zero significant-coefficient flags in the group, then the significant-coefficient-group flag is set to zero. The set of significant-coefficient-group flags is encoded in the bitstream. Any significant-coefficient flags that fall within a group that has a significant-coefficient-group flag that is non-zero are encoded in the bitstream, whereas significant-coefficient flags that fall within a group that has a significant-coefficient-group flag that is zero are not encoded in the bitstream.
A protocol is provided by which a current block and a neighboring block are identified and the current block is processed. In some variants a deblocking filter is applied with a filtering block size set either to the standard blocksize or to the shared blocksize, depending on whether the shared size of the current and neighboring blocks is smaller than a standard blocksize.
The present invention is directed towards a method and system for remote diagnostics in a Digital Subscriber Line (DSL) set-top box network having a head-end unit and a set-top box having diagnostics software. The diagnostics software stored in the set-top box enables the head-end unit to remotely query the set-top box about the current condition of the set-top box and, as a result, reduces the necessity of service calls and/or shipping charges that would otherwise be required. The diagnostics software generates data is response to a set-top box identification request, a software version request, a check television connections request, a check I/O ports request, a check HPNA networking request, a check USB request, a check system ICs request, a check DSL connection request, a check error codes request, a read warranty clock request, a read hours of operation request, and a perform default test request received from the head-end. Execution of the diagnostics software may be initiated as part of a periodical diagnostic test of the set-top box, at the request of a customer having difficulties with the set-top box, or in response to an alarm or alert message generated by the set-top box.
A camera system captures images from a set of cameras to generate binocular panoramic views of an environment. The cameras are oriented in the camera system to maximize the minimum number of cameras viewing a set of randomized test points. To calibrate the system, matching features between images are identified and used to estimate three-dimensional points external to the camera system. Calibration parameters are modified to improve the three-dimensional point estimates. When images are captured, a pipeline generates a depth map for each camera using reprojected views from adjacent cameras and an image pyramid that includes individual pixel depth refinement and filtering between levels of the pyramid. The images may be used generate views of the environment from different perspectives (relative to the image capture location) by generating depth surfaces corresponding to the depth maps and blending the depth surfaces.
Provided is a confidence generation apparatus including: an acquisition unit configured to acquire a depth image signal which includes depth information representing a depth to an object in each of a plurality of pixels; and a generation unit configured to generate global confidence which represents confidence in a global region of the depth image signal. The generation unit includes: a first generation processing unit configured to generate local confidence which represents the confidence in the depth information in each of the plurality of pixels; a region division processing unit configured to divide the depth image signal into a plurality of regions based on the depth information; and a second generation processing unit configured to generate the global confidence in each of the plurality of regions based on the local confidence.
A method of processing a file including video data, including processing a file including fisheye video data, the file including a syntax structure including a plurality of syntax elements that specify attributes of the fisheye video data, wherein the plurality of syntax elements include one or more bits that indicate fisheye video type information, determining, based on the one or more bits of the syntax structure, the fisheye video type information for the fisheye video data, outputting, based on the determination, the fisheye video data for rendering.
This disclosure describes a system configured to present primary and secondary, tertiary, etc., virtual reality content to a user. Primary virtual reality content may be displayed to a user, and, responsive to the user turning his view away from the primary virtual reality content, a sensory cue is provided to the user that indicates to the user that his view is no longer directed toward the primary virtual reality content, and secondary, tertiary, etc., virtual reality content may be displayed to the user. Primary virtual reality content may resume when the user returns his view to the primary virtual reality content. Primary virtual reality content may be adjusted based on a user's interaction with the secondary, tertiary, etc., virtual reality content. Secondary, tertiary, etc., virtual reality content may be adjusted based on a user's progression through the primary virtual reality content, or interaction with the primary virtual reality content.
The image processing device of an embodiment, to which multiple inputted pixels forming an inputted image are inputted in a raster scan order, includes a written pixel position calculating circuit configured to convert the position of each of the inputted pixels to a first pixel position in an outputted image, a read-out pixel position calculating circuit configured to convert the position of an outputted pixel near the first pixel position in the outputted image to a second pixel position in the inputted image, and a pixel interpolating circuit configured to calculate the pixel value of the second pixel position through interpolation with surrounding pixels in the inputted image.
A video display device includes: a video receiver that obtains video data including a video and dynamic luminance characteristics indicating a time-dependent change in luminance characteristics of the video; a tone mapping processor that, in the case where a luminance region having a luminance less than or equal to a first luminance is defined as a low luminance region, and a luminance region having a luminance exceeding the first luminance is defined as a high luminance region, (i) performs first tone mapping using first conversion characteristics when first luminance characteristics exceed a predetermined threshold value, and (ii) performs second tone mapping using second conversion characteristics when the first luminance characteristics are less than or equal to the predetermined threshold value.
Projection systems and/or methods comprising a blurring element are disclosed. In one embodiment, a blurring element may comprise a first plate having a pattern on a first surface and second plate. The first plate and the second plate may comprise material having a slight difference in their respective index of refraction. In another embodiment, a blurring element may comprise a first plate having a pattern thereon and a second immersing material. The blurring element may be placed in between two modulators in a dual or multi-modulator projector system. The blurring element may be configured to give a desired shape to the light transmitted from a first modulator to a second modulator.
An image processing apparatus includes a total pixel value calculator that sums pixel values by each color arranged in one direction and other direction, an occurrence start point detector that determines whether a pixel of interest is an axial chromatic aberration occurrence start point or not based on the calculation result or the pixel value of the pixel of interest and detects the start point, an area determining section that determines an area around the start point as an axial chromatic aberration area, a color space information calculator that calculates color space information, a color space difference calculator that calculates the difference of the color space information between the one direction and the other direction, a correction amount calculator that calculates the correction amount of axial chromatic aberration in accordance with the difference, and a corrector that corrects the axial chromatic aberration area.
The present disclosure relates to an imaging apparatus and an imaging method, a camera module, and an electronic apparatus that are capable of detecting a failure in an imaging device having a structure in which a plurality of substrates are stacked.The timing at which a row drive unit provided in a second substrate outputs a control signal for controlling accumulation and reading of pixel signals in a pixel array provided in a first substrate is compared with the timing at which the control signal output from the row drive unit is detected after passing through the pixel array. Depending on whether or not the timings coincides with each other, a failure is detected. The present disclosure can be applied to an imaging apparatus mounted on a vehicle.
The present disclosure relates to a solid-state imaging device and an electronic device for suppressing deterioration of pixel characteristics while guaranteeing the operating range of VSLs. A solid-state imaging device according to a first aspect of this disclosure has multiple pixel sharing units each including multiple photoelectric conversion sections each configured to correspond to a pixel, an accumulation section configured to be shared by the plurality of photoelectric conversion sections and to accumulate charges generated thereby, and multiple transistors configured to control reading of the charges accumulated in the accumulation section. The plurality of transistors in each pixel sharing unit are arranged symmetrically. The plurality of transistors include a transistor that functions as a switch to change conversion efficiency. The present disclosure may be applied to back-illuminated CMOS image sensors, for example.
Disclosed is an apparatus for reconstructing a three-dimensional profile of a target surface of an object. The apparatus comprises: i) a lighting apparatus having at least two modes of illumination to illuminate the target surface, wherein a first mode of illumination produces a pattern onto the target surface and a second mode of illumination illuminates every part of the target surface; ii) an imaging device for capturing respective images of the target surface upon a sequential activation of the first and second modes of illumination of the target surface by the lighting apparatus; and iii) a processor for reconstructing the three-dimensional profile of the target surface based on the images of the target surface as captured by the imaging device. A method of reconstructing a 3D profile of a target surface of an object is also disclosed.
A portable electronic device including a housing, a retractable antenna rod, and a camera. The housing includes an opening on a side of the housing and a longitudinal axis. The retractable antenna rod extends out from the opening and is coupled to the housing at a first end of the retractable antenna rod. The retractable antenna rod is movable along the longitudinal axis of the housing. The camera is coupled to a second end of the retractable antenna rod. The camera is positionable within the opening of the housing when the retractable antenna rod is retracted into the housing.
A camera parameter set calculation apparatus calculates three-dimensional coordinate sets based on a first image obtained by a first camera mounted on a mobile apparatus, a second image obtained by a second camera arranged on or in an object different from the mobile apparatus, a camera parameter set of the first camera, and a camera parameter set of the second camera, determines first pixel coordinate pairs obtained by projecting the three-dimensional coordinate sets onto the first image based on the first camera parameter set and second pixel coordinate pairs obtained by projecting the three-dimensional coordinate sets onto the second image based on the second camera parameter set, calculates an evaluation value based on pixel values at the first pixel coordinate pairs and pixel values at the second pixel coordinate pairs, and updates the camera parameter set of the first camera based on the evaluation value.
A subject tracking apparatus is configured to track a subject in continuously obtained photographic images. In the photographic image, a position of the subject in the photographic image and reliability that represents subject probability are obtained. The position of the subject to a target position in the photographic image is moved a tracking state of the subject is changed on a basis of the reliability.
An imaging apparatus that provides, between itself and an accessory device, a notification channel used for notification from the imaging apparatus to the accessory device, a first data communication channel used in data transmission from the accessory device to the imaging apparatus, and a second data communication channel used in data transmission from the imaging apparatus to the accessory device. An accessory control unit executes switching of communication methods while notifying the imaging apparatus of a communication standby request for keeping data communication from the imaging apparatus to the accessory device from being performed, via the notification channel.
The disclosure relates to a monitoring system and a control method for a monitoring system. The monitoring system includes a camera device, an object recognizing device and an arrangement control device. The camera device includes at least one movable camera device. The object recognizing device is configured to recognize a target object based on a primary image captured by the camera device. The arrangement control device is configured to control the spatial arrangement of the movable camera device so that the movable camera device is located at a predetermined position relative to the target object.
An electronic device includes a main body, a camera mechanism, a latching mechanism, and a buffer mechanism. The camera mechanism is slidable to extend out of the main body. The main body includes an ejecting member mounted within the main body. The ejecting member is configured to eject the camera mechanism out of the main body. The latching mechanism is mounted within the main body. The latching mechanism is configured to limit movement of the camera mechanism. The buffer mechanism is coupled to the camera mechanism. The buffer mechanism is configured to buffer movement of the camera mechanism.
An assembly method of a camera module is provided. The camera module includes a first and second lens set respectively including at least one lens. The assembly steps include: providing a substrate, a lens holder, and an image sensing device, wherein the image sensing device is located in a space formed by the substrate and the lens holder, and the lens holder includes a limiting portion; disposing the second lens set in the space; assembling a barrel in the limiting portion, wherein the first lens set is disposed in the barrel, the second lens set is located between the first lens set and the image sensing device, and the first and second lens sets and the image sensing device have a common optical axis; inspecting the imaging of the image sensing device; and adjusting a position of the barrel in the limiting portion according to the inspection result.
A double-camera drive device, including: cover bodies, including a first cover body and a second cover body, and each of the cover bodies being provided with a lens accommodating cavity; photographing components, including a first photographing component and a second photographing component, and each of the photographing components including an upper spring, an upper cover, a lens support winded with a drive coil at a outer periphery, driving magnets and a lower spring, wherein the driving magnets includes a left driving magnet, a right driving magnet and a middle driving magnet; and Hall detection components, each of the Hall detection components including a Hall gasket and a Hall magnet provided on each of lens supports, and a Printed Circuit Board (PCB) component. According to the double-camera drive device, beneficial effects of clearer opposite angles and wider framing range and better quality of photographed images are implemented.
An image decoloring apparatus includes a reader configured to read an image on a sheet to acquire image data, a storage section configured to store the image data acquired by the reader, and a first heater configured to heat the sheet. The apparatus further includes a difference extractor configured to extract difference image data based on first image data read from the sheet before it is heated by the first heater and second image data read from the sheet after it is heated by the first heater. The apparatus additionally includes a setting section configured to set a password required to access the difference image data.
A communication device includes a hardware processor that: acquires error history information including a communication condition at a time when an error has occurred in past data communication between the communication device and an external device group and type information of the error in the past data communication; compares, in new data communication between the communication device and one external device, a first communication condition with a second communication condition; starts acquisition processing of a communication packet group related to the new data communication on condition that contents of both of the communication conditions with respect to at least one predetermined item are determined to be the same; and stores the communication packet group in a predetermined storage on condition that an error of a type same as an error type of the one error included in the error history information has occurred in the new data communication.
An image forming apparatus which can prevent from automatically deleting, without user's intention, a box document restored from another image forming apparatus. A document storage deadline is set with respect to a folder thereof for storing box documents so as to set, as a target to be deleted from the folder, a box document having been stored in the folder over the document storage deadline. When it is determined that one of the box documents stored in the folder is a restored document, the one of the box documents is controlled to be excluded from the target.
A scanner includes an image capturing module, a drive roller assembly, an idle roller assembly, and a guiding structure. The image capturing module is for capturing an image of an object. The drive roller assembly is for driving the object to move along a feeding direction. The idle roller assembly is for preventing a moving direction of the object away from the feeding direction by resiliently pressing the object. A feeding passage is formed between the drive roller assembly and the idle roller assembly. The guiding structure is disposed in front of the feeding passage and for guiding a normal direction of a leading edge of the object to be oblique relative to the feeding direction at an oblique angle. Therefore, the present invention can effectively reduce variation of a resistance force acting on the object as the object moves in the feeding path, which prevents image distortion.
An image forming apparatus that executes a screen saver that provides information related with an accessory device connected to the image forming apparatus, and a method of controlling the image forming apparatus that executes a screen saver are provided. The method includes sensing an accessory device connected to the image forming apparatus, requesting execution of a screen saver corresponding to the sensed accessory device, searching for the screen saver corresponding to the sensed accessory device, and executing a found screen saver.
An imaging device includes an imaging unit, a recording medium, a communication unit, and a controller. In a case where an unsent piece of image data is present in the recording medium when the communication unit automatically establishes a new connection with a first external apparatus, when the first external apparatus is identical to an external apparatus having been connected with the communication unit at a time of generation of the unsent piece of the image data, of a plurality of external apparatuses, the controller allows the communication unit to automatically transfer the unsent piece of the image data to the first external apparatus. When the first external apparatus is different from the external apparatus having been connected with the communication unit at the time of generation of the unsent piece of the image data, the controller forbids the communication unit to automatically transfer the unsent piece of the image data to the first external apparatus.
An image forming apparatus prints a template sheet. The template sheet includes a graphical code and operation boxes. The graphical code includes information corresponding to a storage location address that stores information about settings for one or more image forming apparatuses. A user indicates what information is desired or to be changed on the image forming apparatus, marks it on the template sheet and scans the template sheet. Based on the instructions on the template sheet, information for settings is retrieved for an apparatus in a network. Maintenance information for the image forming apparatus also is retrieved using the template sheet and operation boxes.
Aspects of the subject disclosure may include, for example, a method including determining, according to quality of service requirements associated with available services of a communication network, first quality of service parameters associated with facilitating providing a first service to a first communication device, determining, according to the first quality of service parameters, a first allocation of a first resource of a plurality of resources of the communication network to facilitate providing the first service to the first communication device, determining aggregated quality of service requirements associated with the plurality of resources to facilitate providing the available services to the communication devices via the plurality of resources, and directing the first resource to facilitate the first service to the first communication device according to a priority of the first allocation of the first resource based on the aggregated quality of service requirements. Other embodiments are disclosed.
A callback window for initiating an electronic communication session with a customer communication endpoint is received. A request from an agent communication endpoint is received to not handle any electronic communication sessions during a time period. For example, a contact center agent may want to take a lunch break. A determination is made that the callback window (or a portion of the callback window) is within the time period. In response to determining the callback window is within the time period, the system may take various steps, such as, automatically denying the request, automatically adjusting the time period, and sending various messages to the agent communication endpoint to identify ways to handle the communication session.
A context aware mobile personalization system is disclosed for a software development environment with plug-in capabilities for providing personalized phone capabilities based on the automated detection of user context.
An electronic device includes a housing, one or more input/output (I/O) interfaces included in or on the housing, a processor, and a memory, wherein the memory stores a plurality of templates associated with a plurality of tasks, wherein each of the templates includes a plurality of parameters for at least partially completing a respective one of the tasks, and wherein the memory further stores instructions that, when executed, cause the processor to: receive a user input to set up an alarm associated with a task to be performed at a selected time, wherein the input includes a first time parameter associated with the selected time; select one of the plurality of templates; determine a second time parameter of the plurality of parameters of the selected template; determine a time for the alarm; and provide the alarm at the determined time.
The description relates to device pairing. One example can involve a computing device (e.g., companion device) and a stylus. The companion device can have a display and be configured to communicate in accordance with a wireless protocol. The stylus can be configured to transmit proximity information to the computing device when a user brings a tip of the stylus proximate to the display and be configured to supply wireless protocol identification information with the proximity information. The computing device can be configured to pair with the stylus over the wireless protocol using the wireless protocol identification information without requiring any additional action from the user on the computing device or the stylus.
An outward-folding display device includes two flat casings adapted to be connected to a flexible display, and two hinge units connected between the casings such that the casings are convertible between unfolded and folded positions. Each of the hinge units includes two rotatable drive shafts, and two compensation subunits each including a rotating plate that is co-rotatably connected to a respective one of the drive shafts, and a driven plate that is slidable relative to the rotating plate and that is connected to a respective one of the casings, such that during conversion of the casings, the driven plate and the respective one of the casings slide relative to the rotating plate to prevent the flexible display from being stretched and damaged.
Systems, methods, and software described herein provide enhancements for computing platforms. In one example, a computing device is configured to maintain attribute scoring metrics that rate target computing devices in competency among at least a portion of roles defined at least by presently provisioned software elements and hardware elements. The computing device is configured to identify tasks to be serviced using one or more of the roles, and based at least in part on the attribute scoring metrics, determine one or more target computing devices that satisfy the one or more of the roles to handle the tasks. The computing device is configured to transfer at least task instructions for delivery to the one or more target computing devices for performing the tasks using at least one among the presently provisioned software elements and hardware elements associated with the one or more of the roles.
A method for fetching a content from a web server to a client device is disclosed, using tunnel devices serving as intermediate devices. The client device accesses an acceleration server to receive a list of available tunnel devices. The requested content is partitioned into slices, and the client device sends a request for the slices to the available tunnel devices. The tunnel devices in turn fetch the slices from the data server, and send the slices to the client device, where the content is reconstructed from the received slices. A client device may also serve as a tunnel device, serving as an intermediate device to other client devices. Similarly, a tunnel device may also serve as a client device for fetching content from a data server. The selection of tunnel devices to be used by a client device may be in the acceleration server, in the client device, or in both. The partition into slices may be overlapping or non-overlapping, and the same slice (or the whole content) may be fetched via multiple tunnel devices.
Provided are systems, methods, and media for identifying and purging unwanted contacts. An example method includes monitoring electronic group communication that is conducted between two or more people and building a persona profile for a person of the electronic group communication during a first period of time based, at least in part, on extracting during the first period of time, from the monitored electronic group communication, behavior data associated with a first contact number. The method includes detecting, during a second period of time, whether the person associated with the first contact number has changed. The method includes transmitting an alert to at least one person of the two or more people indicating that the person associated with the first contact number has changed.
According to an embodiment, an information processing apparatus includes a prefetch unit and a scheduler unit. The prefetch unit is configured to prefetch a scheduling entry corresponding a future time period in advance from scheduling information including one or more entries each of which at least contains a transmission state and interval for each of one or more transmission queues. The scheduler unit configured to determine a starting time of transmission for each frame waiting for transmission in each queue, on the basis of the prefetched entry.
A network interface device has an input configured to receive data from a network. The data is for one of a plurality of different applications. The applications may be supported by a host system. The network interface device is configured to determine which of a plurality of available different caches in a host the data is to be injected. The network interface device will then inject the determined cached with the received data.
Various techniques provided herein generate trigger events in an organization information distribution system. Various implementations establish a connection between an invocation device and a server using a communication network. Establishing the connection can include authenticating the invocation device to the server and/or authenticating the server to the invocation device. In response to establishing the connection to the server, one or more implementations detect a trigger event, such as the actuation of a hardware mechanism and/or a sensor detecting the trigger event without user-intervention. Some implementations capture content based on a point in time associated with when the trigger event occurs. Upon detecting the trigger event, various implementations forward a notification of the trigger event and/or the captured content.
The ACTIONABLE NOTIFICATIONS APPARATUSES, METHODS AND SYSTEMS (“ACNO”) transforms inputs such as actionable notification enrollment input, action input, and trigger messages via ACNO components into actionable notification message output. In one embodiment, the disclosure describes a processor-implemented actionable notification method, which comprises, receiving an actionable notification enrollment request with a device identification, and criteria for receiving actionable notifications, and receiving an actionable notification trigger message. The method further comprises determining an actionable notification message based on the actionable notification trigger message and the criteria for receiving actionable notifications, and determining actionable notification associated actions. The method further comprises transmitting the actionable notification message and the associated actions, and receiving an action selection from the associated actions, and effecting the action selection.
Simultaneous dual band operation (2.4 and 5 GHz) is common in APs on the market today, and tri-band devices are expected in the market soon. Link aggregation can also be applicable to multiple air interfaces in the same band (for instance 2 independent IEEE 802.11ac/ax air interfaces at 5 GHz on 2 different 80 MHz channels). One exemplary aspect provides technology that enables significantly higher throughput and/or higher reliability for two stations (STAs) or a STA and the access point (AP) when the devices support simultaneous multi-band operation.
Technical solutions are described automatically filtering user images being uploaded to a social network. An example computer-implemented method includes detecting an image file, which contains an image of a user, being uploaded to the social network server. The method further includes determining compliance of the image file with a predetermined profile associated with the user. The method further includes, in response to the image failing to comply with the predetermined profile, modifying the image file to generate a modified image file, and uploading the modified image file to the social network server.
A method and apparatus for providing an opportunistic crowd based service platform is disclosed. A mobile sensor device is identified based on a current location and/or other qualities, such as intrinsic properties, previous sensor data, or demographic data of an associated user of the mobile sensor device. Data is collected from the mobile sensor device. The data collected from the mobile sensor device is aggregated with data collected from other sensor devices, and content generated based on the aggregated data is delivered to a user device.
A data caching method and device, and a resource request response method and device. The data caching method comprise: receiving a resource request for group content belonging to a specific user group, the resource request being sent from a user terminal to an application server by a user; checking if a mapping between the group content and a group caching ID for identifying the user group and a mapping between the user and the group caching ID have been established in the caching server; and returning the group content cached in the caching server to the user terminal in responses to the mapping between the group content and the group caching ID and the mapping between the user and the group caching ID having been established in the caching server.
A method for implementing online anti-phishing, related to the field of information security, comprising: a browser loads an online anti-phishing control, the control acquires a blacklist and a whitelist, if a received URL of the browser is in the blacklist, the browser is stopped from loading, if the URL is in the whitelist, the browser is notified to load, and if the URL is neither in the blacklist nor in the whitelist, a determination is made on whether or not the URL of the browser satisfies a preset fuzzy match criterion, if same is satisfied, then a user is prompted of danger, when the user chooses to proceed, a preset account combination is acquired, when received keypress information is numerals and an input focus is an input box control, the keypress information is compared with the preset account combination, if both are identical then the user is prompted of danger, and either stop or load as chosen by the user. The method allows processing of the blacklist and the whitelist to be implemented and addition of fuzzy query, thus implementing processing of the blacklist and the whitelist, preventing a hacker from stealing banking information of the user by using a fraudulent URL identical to one in the whitelist, and enhancing security.
The present invention relates to communications methods and apparatus dynamically detecting and/or mitigating anomalies in communications systems/networks. An exemplary embodiment includes the steps of: processing a set of call detail records (CDRS), each CDR in said set of CDRs corresponding to an individual call and including multiple information fields providing information about the individual call to which the CDR corresponds, said processing including: generating from said CDRs, on a per CDR basis one or more Field GroupIDs using a hash function; generating for CDRs corresponding to a first Field GroupID a first set of key performance indicators (KPIs), said first set of (KPIs) including one or more KPIs corresponding to the first Field GroupID, said one or more KPIs including at least a first KPI; and determining that a first KPI violation has occurred for the first Field GroupID when the first KPI exceeds a dynamic performance threshold.
In one embodiment, a centralized controller maintains a plurality of hierarchical behavioral modules of a behavioral model, and distributes initial behavioral modules to data plane entities to cause them to apply the initial behavioral modules to data plane traffic. The centralized controller may then receive data from a particular data plane entity based on its having applied the initial behavioral modules to its data plane traffic. The centralized controller then distributes subsequent behavioral modules to the particular data plane entity to cause it to apply the subsequent behavioral modules to the data plane traffic, the subsequent behavioral modules selected based on the previously received data from the particular data plane entity. The centralized controller may then iteratively receive data from the particular data plane entity and distribute subsequently selected behavioral modules until an attack determination is made on the data plane traffic of the particular data plane entity.
Systems and methods that determine an anomaly in a network are provided. A monitoring engine is installed on a computing device that monitors network information and application information for data flows generated on the computing device and transmitted over a network and for data flows received by the computing device from the network. The network information includes an internet protocol (IP) source address, a source port, an IP destination address, a destination port, and a transport protocol, and a number of bytes sent or received by the flow. The application information includes a process identifier (ID), the threads ID, an application ID and/or a function call, arguments passed to the function, a stack trace of the function, etc., that application used to generate the data flows. The network information and application information can be used to identify the application, thread and/or a function that caused an anomaly in the network.
This disclosure is directed to monitoring a crypto-partitioned, or cipher-text, wide-area network (WAN). A first computing device may be situated in a plain-text portion of a first enclave behind a first inline network encryptor (INE). A second device may be positioned in a plain-text portion of a second enclave behind a second INE. The two enclaves may be separated by a cipher-text WAN, over which the two enclaved may communicate. The first computing device may receive a data packet from the second computing device. The first computing device may then determine contents of a header of the data packet. The first computing device may, based at least in part on the contents of the header of the data packet, determine a status of the cipher-text WAN.
A method for a virtual machine to access a physical server in a cloud computing system is disclosed. A cloud platform allocates, to the service deployed on the physical server, a publishing IP address and a publishing port and sends a NAT rule to an access network element of the virtual machine. When receiving a service access request for accessing the service, the access network element modifies, according to the NAT rule, a destination address of the service access request into the IP address and the port that are of the physical server, and routes the modified service access request to the physical server, so that the virtual machine can access the service on the physical server without knowing a real IP address and port of the physical server.
A vertically integrated access control system may store in a database data records corresponding to the interfaces, access control rules, and computing resources of an information system, as well as data records for entity capabilities. Data records for related interfaces, access control rules, computing resources, and entity capabilities may be linked. Using the database, the system may determine the entity capabilities that can be performed based on an existing user entitlement. If the entity capabilities include a flagged combination of entity capabilities, the system may perform an information security action to remediate the flagged combination. The system may use the database to form vertically integrated access units. The vertically integrated access units may be used to form user entitlements. The system may continuously monitor whether any proposed configurations would create a flagged combination of entity capabilities, and if so take an action to prevent such flagged combination.
A non-transitory computer readable storage medium has instructions executed by a processor to receive a query statement. The query statement is one of many distributed storage and distributed processing query statements with unique data access methods. Token components are formed from the query statement. The token components are categorized as data components or logic components. Modified token components are formed from the token components in accordance with a policy. The query statement is reconstructed with the modified token components and original computational logic and control logic associated with the query statement.
Systems and methods are provided that securely authenticate a user of a web application. For example, the user may utilize a bot from within a first application, such as a chat application. The user may request the bot to access a second application (e.g., a social-networking application) that is remote from the first application. If the bot does not have authorization, the bot may redirect the user to a webpage for the second application, where the user may enter login credentials. Upon verification, the second application may provide an access token to a webpage associated with the bot. To authenticate the bot user, the bot webpage may generate and cache a nonce that is transmitted back to the first application, which then transmits it to the bot. The bot may then compare the received nonce with the cached nonce. If the nonces match, the user may be securely authenticated.
The disclosed embodiments relate to securely transferring data between a source node and a destination node using an application whitelist. A control flow may be established between a source node and a perimeter gateway. the perimeter controller may receive a request to establish a node flow between an application executing on the source node and the destination node. the perimeter controller may determine whether the first application is included in an application whitelist that includes applications allowed to transfer data to nodes in a private network via a node flow. A node flow between the source node and destination node may be established upon determining that the first application is included in the application whitelist to facilitate secure data transfer between the source node and destination node.
Embodiments of the present invention provide a system for a multi-factor authentication of a user via a vehicle recognition of the user. In this way, the invention may identify a user co-located to a vehicle and authenticate that user via communicable linkages between a user device and automobile system. The invention may authenticate the user via the communicable linkage, vehicle biometrics, user vehicle preferences, and/or third party authentication. Based on a number of authentication points identified, the system may identify a level of authentication for accessing authentication locations. The system may then allow user access to various locations from his/her vehicle without requiring authentication into those locations.
Identity authentication comprises: determining, in response to a request from a first device operated by a source user, that an identity authentication is to be performed for the source user; identifying a target user who is deemed to satisfy at least a preset condition, the target user being a user other than the source user; generating validation information to authenticate identity of the source user; sending the validation information to a second device operated by the target user; receiving a validation response from the first device operated by the source user; and performing identity authentication, including verifying whether the validation response received from the first device operated by the source user matches the validation information sent to the second device.
The technology disclosed relates to non-intrusively enforcing security during federated single sign-on (SSO) authentication without modifying a trust relationship between a service provider (SP) and an identity provider (IDP). In particular, it relates to configuring the IDP to use a proxy-URL for forwarding an assertion generated when a user logs into the SP, in place of an assertion consumer service (ACS)-URL of the SP. It also relates to configuring an assertion proxy, at the proxy-URL, to use the SP's ACS-URL for forwarding the assertion to the SP. It further relates to inserting the assertion proxy in between the user's client and an ACS of the SP by forwarding the assertion to the SP's ACS-URL to establish a federated SSO authenticated session through the inserted assertion proxy.
A method for controlling a controlled electronic device by using an electronic device includes storing a group operation command including attribute information and operation information, the attribute information and the operation information corresponding to at least one controlled electronic device; and when the electronic device enters a network, transmitting the group operation command to at least one of a gateway, configured to manage the network, and at least one first controlled electronic device that is determined to correspond to the group operation command in the network, to perform an operation based on the operation information included in the group operation command.
Device identification scoring systems and methods may be provided that can increase the reliability and security of communications between devices and service providers. Users may select and configure additional identification factors that are unique and convenient for them. These factors, along with additional environmental variables, feed into a trust score computation that weights the trustworthiness of the device context requesting communication with a service provider. Service providers rely on the trust score rather than enforce a specific identification routine themselves. A combination of identification factors selected by the user can be aggregated together to produce a trust score high enough to gain access to a given online service provider. A threshold of identification risk may be required to access a service or account provided by the online service provider.
In accordance with embodiments, there are provided mechanisms and methods for facilitating protection of data in a database environment in an on-demand services environment according to one embodiment. In one embodiment and by way of example, a method includes detecting, by a first computing device in the database environment, sensitive data associated with a user having access to a second computing device, where the sensitive data is capable of being communicated within a geographic residency. The method may further include performing, by the first computing device, secured communication of the sensitive data between at least one of multiple computing devices and multiple application frames within the geographic residency, wherein the first computing device includes a proxy server that is locally situated within the geographic residency.
A computing device can install and execute a kernel-level security agent that interacts with a remote security system as part of a detection loop aimed at defeating malware attacks. The kernel-level security agent can be installed with a firewall policy that can be remotely enabled by the remote security system in order to “contain” the computing device. Accordingly, when the computing device is being used, and a malware attack is detected on the computing device, the remote security system can send an instruction to contain the computing device, which causes the implementation, by an operating system (e.g., a Mac™ operating system) of the computing device, of the firewall policy accessible to the kernel-level security agent. Upon implementation and enforcement of the firewall policy, outgoing data packets from, and incoming data packets to, the computing device that would have been allowed prior to the implementation of the firewall policy are denied.
Systems, methods, and software disclosed herein facilitate draft reminders. In at least one implementation, a primary view of an information management application is rendered. In various scenarios the primary view may include primary items, such as emails, events, tasks, or other types of items. When a reminder view is invoked, draft items are identified to include in the reminder view. The reminder view is then rendered in an overlaid manner with respect to the primary view and includes the draft items.
The present disclosure generally relates to user interfaces for displaying and using avatars. In some embodiments, avatars are used to generate stickers for sending in a content-creation user interface. In some embodiments, avatars are used to generate a representation of a contactable user in a contactable user editing user interface. In some embodiments, a user interface can be used to create and edit an avatar. In some embodiments, a user interface can be used to display an avatar that is responsive to detected changes in pose of a face of a user. In some embodiments, contact information is transmitted or received.
A system for flexible and scalable automated end-to-end chat-based contact center testing, having a test case management platform, a chat cruncher, a contact center manager, a chat classifier, a desktop automation engine, and headless browser-based virtual agents and customers. The test case management platform allows a user to configure operation of the system. The chat cruncher operates a plurality of virtual customers. The contact center manager operates a plurality of virtual agents to participate in chat session with virtual customers.
A method for monitoring traffic in a network is provided. The method is used in a communication device, wherein the network is formed by switches and hosts. The method includes: collecting LLDP information, VLAN information, host NIC information and host-tenant mapping information to obtain a physical network topology and a plurality of virtual network topologies; detecting a plurality of physical link loads of the physical network topology; obtaining a target path between two of the hosts or between the switches by analyzing the virtual network topologies; selecting one of the switches on the target path to serve as a mirror switch according to the physical link load corresponding to the target path or a hop count; and receiving mirror traffic transmitted from the mirror switch, and performing packet payload analysis on the mirror traffic.
A network interface device is provided in a first device. The network interface device comprises an interface configured to receive a first input from a network. The network interface device also has at least one processor configured to provide an output in dependence on contents of the first input and provenance information which uniquely identifies the network interface device, the output being output via the interface to the network.
A transmitting device comprising a transmit buffer for buffering a plurality of packets representing a live media stream, the packets having an order in the media stream from oldest to most recent. The transmitting device further comprising a transmitter for transmitting the packets from the buffer live over a network; and a controller arranged to measure an amount of data buffered for transmission in the transmit buffer, and to drop or compress the oldest packet or a predetermined number of the oldest packets on condition that the amount of data buffered for transmission exceeds or is likely to exceed a predetermined threshold.
A frame transmission controlling apparatus includes: a list configuration unit managing a parameter related to a gate control; a cycle timer unit managing a start timing of a cycle; a list executing unit performing the gate control based on the parameter, wherein the list executing unit includes: a cycle executing state machine setting an expiration time of at least one section included in the cycle, checking gate operation information corresponding to a list pointer indicating the at least one section, and performing a control corresponding to the gate operation information; a delaying state machine deducting and updating the expiration time by a predetermined unit; a cycle holding state machine generating a control signal indicating stopping transmission in MAC; and a cycle releasing state machine generating a control signal indicating resuming the transmission in MAC.
An adaptive hybrid control method and apparatus are provided for performing active queue management in a data packet routing device which adaptively combines fuzzy controller logic, alone or in combination with RBF-PID control logic, to provide improved management of network congestion by applying a nonlinear model for buffer utilization to at least a buffer size measure for the target buffer to generate at least a fuzzy membership function adjustment signal, and then supplying the fuzzy membership function adjustment signal to a first controller to automatically tune membership function parameters of the first controller, where the first controller calculates a first packet select probability value for the data packet based at least partly on the fuzzy membership function adjustment signal and an error measure between the buffer size setpoint and the buffer size measure.
Disclosed herein are system, method, and computer program product embodiments for representing a forwarding information base (FIB) in a database. An embodiment operates by determining that a first routing prefix of a first forwarding entry in the FIB is a less specific routing prefix than a second routing prefix in a second forwarding entry in the FIB. The embodiment determines that a first next hop of the first routing prefix is equal to a second next hop of the second routing prefix. The embodiment removes the second forwarding entry from the FIB. The embodiment then inserts the first forwarding entry into a database (e.g., a longest exact match (LEM) database or a longest prefix match (LPM) database) based on a prefix length of the first routing prefix of the first forwarding entry.
A method for traffic forwarding in a network is provided. The method includes matching a destination IP (Internet protocol) address (DIP) of a packet, in a forwarding information base (FIB) table to point to a next-hop group for the packet, in a first matching operation. The method includes redirecting the packet to a differing next-hop group, responsive to matching each of the next-hop group for the packet and a field of the packet in a second matching operation, wherein the field marks the packet as belonging to a class of service. The method includes routing the packet to a next node, in accordance with the next-hop group or the differing next-hop group as determined for the packet. A network element is also provided.
A data routing method and apparatus resolve a problem that data packet forwarding efficiency is greatly reduced because a service function instance sequence needs to be retrieved for each data packet according to a 5-tuple of a data flow to which the data packet belongs. The data routing method includes: receiving, by a traffic classifier, a data packet, where the data packet belongs to a first data flow; allocating, by the traffic classifier, a first data route identifier to the first data flow, where the first data route identifier is used to identify a service function chain of the first data flow and is used to identify the first data flow; adding, by the traffic classifier, the first data route identifier to the data packet; and sending, by the traffic classifier, the data packet to a service function forwarding device.
Embodiments of the present invention provide a service path protection method, a controller, a device and a system. The method includes: receiving, by an end node of a protection path, a path selection instruction sent by an SDN controller, wherein the path selection instruction comprises a service path and protection path activation type, forwarding relationships respectively of a service path and the protection path in the end node; activating at least one forwarding relationship according to the service path and protection path activation type; and when a fault occurs in the service path, updating the at least one forwarding relationship according to the service path and protection path activation type. The embodiments of the present invention relate to the field of communications technologies and resolve a problem that in an SDN technology, when a fault occurs in a service path, a protection path cannot be used.
Network packet traffic in a Long Term Evolution (LTE) network is analyzed by associating a micro network access agent with a single network element in the LTE network and performing packet traffic analysis for packet traffic processed by the single network element using the micro network access agent.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for assigning channels in a messaging system. An example method includes: providing a plurality of channels, wherein each channel includes an ordered plurality of messages; assigning each channel to a channel bucket to form a plurality of channel buckets, wherein each channel bucket includes at least two channels from the plurality of channels; and assigning each channel bucket to a node selected from a plurality of nodes, wherein the node includes one or more buffers for storing messages according to the order from the channel buckets of the node.
An approach for establishing a priority ranking for endpoints in a network. This can be useful when triaging endpoints after an endpoint becomes compromised. Ensuring that the most critical and vulnerable endpoints are triaged first can help maintain network stability and mitigate damage to endpoints in the network after an endpoint is compromised. The present technology involves determining a criticality ranking and a secondary value for a first endpoint in a datacenter. The criticality ranking and secondary value can be combined to form priority ranking for the first endpoint which can then be compared to a priority ranking for a second endpoint to determine if the first endpoint or the second endpoint should be triaged first.
In one embodiment, a processor-readable medium can be configured to store code representing instructions to be executed by a processor. The code can include code to receive a request to change a value representing a number of data center units included in a set of data center units assigned to a user. Each of the data center units from the set of data center units can be associated with hardware resources managed based on a set of predefined hardware resource limit values. The code can include code to determine, in response to the request, whether hardware resources of a data center unit mutually exclusive from hardware resources of the set of data center units and managed based on the set of predefined resource limit values is available for assignment to the user when the request to change is an increase request.
The present disclosure pertains to systems and methods for automating the configuration of communication hosts in a software defined network (SDN) associated with an electric power transmission and distribution system. The systems and methods presented herein may utilize communication host profiles to specify various repeatable attributes and customizable attributes that may be utilized to configure the communication host and the SDN. In one embodiment, a system may comprise a communication host profile subsystem configured to select a communication host profile associated with a communication host. The host communication profile subsystem may configure the communication host based on one or more repeatable attributes and on one or more customizable attributes specified in the host communication profile. A traffic routing system may further configure a plurality of communication flows in the SDN based on the communication host based on the host communication profile.
A method of allocating a plurality of processes on a plurality of node devices coupled through a network, includes: dividing the plurality of processes into one or more process groups including at least one process among the plurality of processes, based on a bandwidth desired for data communication between processes in the plurality of processes; specifying, for each of the one or more process groups, a node device which is able to perform entirety of processes included in the process group among the plurality of node devices; and allocating the process group on the specified node device, for each of the one or more process groups.
A method and system for managing a large number of servers and their server components distributed throughout a heterogeneous computing environment is provided. In one embodiment, an authenticated user, such as a IT system administrator, can securely and simultaneously control and configure multiple servers, supporting different operating systems, through a “virtual server.” A virtual server is an abstract model representing a collection of actual target servers. To represent multiple physical servers as one virtual server, abstract system calls that extend execution of operating-system-specific system calls to multiple servers, regardless of their supported operating systems, are used. A virtual server is implemented by a virtual server client and a collection of virtual server agents associated with a collection of actual servers.
A method for transmitting a broadcast signal is disclosed. The method for transmitting a broadcast signal according to an embodiment of the present invention includes link layer processing IP/UDP data to output a link layer packet, and physical layer processing the link layer packet based on a PLP.
Provided is a transmission method that improves data reception quality in radio transmission using a single-carrier scheme and/or a multi-carrier scheme. The transmission method includes: generating a plurality of first modulated signals s1(i) and second modulated signals s2(i) from transmission data, the plurality of first modulated signals s1(i) being signals generated using a QPSK modulation scheme, and the plurality of second modulated signals s2(i) being signals generated using 16QAM modulation; generating, from the plurality of first modulated signals s1(i) and the plurality of second modulated signals s2(i), a plurality of first signal-processed signals z1(i) and a plurality of second signal-processed signals z2(i) which satisfy a predetermined equation; and transmitting the plurality of first signal-processed signals z1(i) and the plurality of second signal-processed signals z2(i) using a plurality of antennas. A first signal-processed signal and a second signal-processed signal having identical symbol numbers are simultaneously transmitted at the same frequency.
A system and method for waveform modulation includes encoding input digital data at selected phase angles of an unmodulated sinusoidal waveform. The encoding includes selectively reducing a power of the unmodulated sinusoidal waveform at the selected phase angles in accordance with bit values of the input digital data so as to respectively define first, second, third and fourth data notches in the modulated sinusoidal waveform. An encoded analog waveform is then generated from a digital representation of the modulated sinusoidal waveform. The encoding is performed so that energies associated with the first and third data notches are balanced and energies associated with second and fourth data notches are also balanced. Each of the energies corresponds to a cumulative power difference between a power of the unmodulated sinusoidal waveform and a power of the modulated sinusoidal waveform over a phase angle range subtended by one of the data notches.
Automobile communication networks for direct multimode communications of automobiles with automobiles, automobiles with base stations, automobiles with a variety of mobile devices, and automobiles with computers. Digital mobile communications devices and methods for mobile peer to peer direct communications. Processing a touch screen generated signal into a processed touch screen control signal for controlling mobile devices. Processing fingerprint signal for authenticating a user of a mobile device. Processing in a mobile device a motion detector generated signal into a motion detector generated control signal, for navigation control of mobile device. Remote Control (RC) Signal reception, demodulation and processing for control of automobile communication, location and navigation. Modulation and demodulation, transmission and reception of one Orthogonal Frequency Division Multiplexed (OFDM) signals and conversion of the received OFDM signal into a different OFDM signal. Received spread spectrum signals from 3G or 4G or 5G cellular systems and networks are converted into OFDM signals and transmitted in a wireless network, e.g. a Wi-Fi network. One or more receivers and demodulators for receiving demodulating and processing received signals into location finder information. A video camera in mobile device generates video signal and transmits video signal with location finder information signal.
The present application disclosed a decision feedback equalization processing device and method. The device comprises: a channel estimator for receiving an input signal, and determining, based on the input signal, an input signal autocorrelation matrix Ryy, an input-output signal cross-correlation matrix Ryx and an input-output signal cross-correlation vector ryx; a tap coefficient calculator for receiving Ryy, Ryx and ryx, and calculating a feed-forward equalizer (FFE) tap coefficient vector g and a feedback equalizer (FBE) tap coefficient vector f, wherein at least one of the FFE tap coefficient vector g and the FBE tap coefficient vector f is calculated using a conjugate gradient descent algorithm. The tap coefficient calculator comprises: a circulant matrix construction unit and a fast Fourier transformation (FFT) calculating unit. And the device further comprises a decision feedback equalizer for receiving from the tap coefficient calculator the FFE tap coefficient vector g and the FBE tap coefficient vector f, and performing equalization on the input signal and generating an equalized output signal.
A path detection method and apparatus, where the method includes generating M virtual extensible local area network (VXLAN) probe packets according to a source User Datagram Protocol (UDP) port number, a destination UDP port number, and a probe identifier when there are multiple equivalent paths between a source VXLAN tunnel endpoint (VTEP) and a destination VTEP, sending the M VXLAN probe packets to the source VTEP to forward the M VXLAN probe packets to the destination VTEP, receiving VXLAN advertisement packets from the source VTEP, the destination VTEP, and intermediate nodes in the multiple equivalent paths according to the M VXLAN probe packets, and detecting, according to the VXLAN advertisement packets, whether a fault occurs in a path of the multiple equivalent paths between the source VTEP and the destination VTEP.
For a multi-tenant environment, some embodiments of the invention provide a novel method for (1) embedding a specific path for a tenant's data message flow through a network in tunnel headers encapsulating the data message flow, and then (2) using the embedded path information to direct the data message flow through the network. In some embodiments, the method selects the specific path from two or more viable such paths through the network for the data message flow.
Techniques facilitating using a blockchain system that integrates the trustworthiness of the blockchain concept with open scientific research by generating a blockchain of the experiments formed, data collected, analyses performed, and results achieved are provided herein. In an example, the blockchain system can form a blockchain representing a research project, wherein the blockchain comprises a first block of research data and a second block of analysis data representing a log of an analysis performed on the research data. Summary blocks and correction blocks can also be added to the blockchain representing the post analysis of the research results. One or more of the subsequent blocks can be linked to the preceding blocks using information in block headers that can also serve to determine whether modifications to the blocks have been performed.
A multi-port PUF circuit based on MOSFET current division deviations comprises a reference source, a row decoder, a column decoder, a timing controller and 32 PUF arrays. Each PUF array comprises 512 PUF cells arranged in 128 rows and 4 columns, an arbiter, a 1st inverter, a 2nd inverter, a 3rd inverter, a 4th inverter and eight transmission gates. The reference source is connected to the PUF arrays. The mth output terminal of the row decoder is connected to the mth row selective signal input terminals of the 32 PUF arrays. The jth output terminal of the column decoder is connected to the jth selective signal input terminals of the 32 PUF arrays. The 1st output terminal of the timing controller is connected to the control terminal of the row decoder. The 2nd output terminal of the timing controller is connected to the control terminal of the column decoder. The multi-port PUF circuit has the advantages of small circuit area and low power consumption while ensuring circuit performance.
This document discloses a system and method for verifying system integrity of an electronic device. The electronic device includes a verifier device provided within a secure environment of the electronic device and a scanner device provided within a normal environment of the electronic device whereby the secure environment comprises hardware that is isolated from the hardware in the normal environment, i.e. these two environments are hardware isolated.
A data encryption method performed at a computing device includes: receiving a data encryption request, the data encryption request indicating original data that needs to be encrypted and at least two target storage devices that are communicatively connected to the computing device; in response to the data encryption request: separately obtaining unique device information of the at least two target storage devices; generating, based on the unique device information, a public key according to a preset policy; encrypting the original data by using the public key to obtain ciphertext; and destructing relevant data of the public key from the computing device, and storing the ciphertext into the at least two target storage devices.
A system stores data in data units in a cluster in a cloud computing system, the data stored in the data units being encrypted or unencrypted depending on whether encryption is enabled or disabled when storing data in the data units. The system identifies one or more data units to defragment and defragments the identified data units by writing the data from the identified data units to one or more new data units and by releasing the identified data units for storing new data. The system encrypts unencrypted data from the identified data units when writing the data from the identified data units to the one or more new data units.
Methods and apparatus relate to a 1-to-2 memory interface deserializer circuit that, in a training mode, independently positions even and odd strobes in respective even and odd data windows. In an illustrative example, the deserializer circuit may receive a data signal that encodes even and odd data streams on the rising (even) and falling (odd) edges of a strobe clock signal. During a training mode, the deserializer circuit may independently determine, for example, an optimal temporal delay for each of the even strobe and the odd strobe. Adjustable delay lines dedicated to each of the even and odd strobe signals may simultaneously detect valid data window edges to permit determination of a desired delay to optimally position the strobe signals. Various embodiments may advantageously reduce jitter associated with asymmetric strobe and/or data signals to achieve a predetermined specification (e.g., timing margins) within the corresponding data windows.
A method and apparatus for configuring a radio link of a terminal communicating via aggregated carriers including a primary cell and a secondary cell are provided. The method includes detecting a Radio Link Failure (RLF) for the secondary cell, deactivating the secondary cell, and reporting at least one of a measurement result of the secondary cell and a measurement result of neighboring cell of the secondary cell to a base station. The apparatus includes a transceiver for communicating with a base station, and a controller configured to detect a RLF for the secondary cell, to deactivate the secondary cell, and to report at least one of a measurement result of the secondary cell and a measurement result of neighboring cell of the secondary cell to the base station.
A wireless device receives a radio resource control (RRC) message comprising an aperiodic sounding reference signal (SRS) subframe parameter. The wireless device receives a downlink control information (DCI) triggering an SRS transmission and indicating uplink resources in consecutive subframes. The wireless device determines a position of a subframe in the consecutive subframes based on the aperiodic SRS subframe parameter. The wireless device transmits the SRS via the subframe.
A transmitting node can puncture bundles of data for a first service in a transmission for a second service. The first service has lower latency requirements than the second service. The transmitting node determines data for a first service will be transmitted during a time period when data for a second service will be transmitted, and determines transmission or reception conditions. Based on the determined transmission or reception conditions, the transmitting node determines to adjust the transmission of the first service. The transmitting node then transmits during the time period the data for the first service while data for the second service is transmitted during the time period, wherein the transmission includes an original set of data for the first service and at least one repetition of the original set of data for the first service.
Hybrid ARQ is employed in a multi-carrier communication system for retransmission of erroneous packets by taking advantage of time/frequency/space diversity and by combining ARQ functions at physical layer and MAC layers, making the multi-carrier system more robust in a high packet-error environment.
Provided is a wireless communication terminal that communicates wirelessly. The terminal includes: a transceiver; and a processor. The processor is configured to receive a Downlink Multi-User (DL MU) PPDU including information for an Uplink Multi-User (UL MU) transmission from a base wireless communication terminal by using the transceiver, and transmit the UL MU PPDU to the base wireless communication terminal based on the information for UL MU transmission.
An optical communications system includes an optical transmitter and an optical receiver optically coupled to an optical combiner/splitter, the combiner/splitter coupled to optical media; and, another optical transmitter and another optical receiver optically coupled to another optical combiner/splitter, the another combiner/splitter remotely coupled to the optical media; wherein the optical transmitter and the another optical transmitter are configured to transmit optical signals at substantially the same wavelength.
Fronthaul monitoring systems and methods include a Radio Frequency (RF) analysis module configured to receive an optical RF signal for RF testing thereof; a fiber monitoring module configured to perform fiber monitoring testing; an optical switch configured to switch a port connected to the RF analysis module and the fiber monitoring module between one or more Remote Radio Heads (RRH); and a test coordinator software module configured to coordinate the RF testing and the fiber monitoring testing. The optical RF signal is at different wavelengths than a fiber test signal for the fiber monitoring testing, such that the RF testing and the fiber monitoring testing can be performed concurrently.
An active optical cable is disclosed. According to the present disclosure, there is provided an active optical cable, characterized by: having no complicated structure by obviating the need for a separate monitoring photodetector as was used for a typical optical transceiver, increasing light output-current linearity to improve optical coupling efficiency, generating a library of transmission/reception-related electro-optical characteristics of both optical modules so as to enable light outputted from a light source included in an optical transmitter to maintain high linearity over a wide range of temperatures, thereby reducing power consumption, and being applicable to a multi-level PAM technique involving at least four (4) levels.
[Problem] To provide an optical transmission device that, while suppressing band narrowing due to optical filters, achieves flexibility of optical communication such as wavelength reutilization and that supports a flexible grid.[Solution] An optical transmission device according to the present invention is provided with a cyclic AWG that filters respective optical signals inputted to each input port. The respective optical signals are constituted so that a plurality of wavelength-multiplexed signals can be allocated within one channel band, the respective optical signals are filtered in channel units, and the pass-band width of each of the input ports of the cyclic AWG corresponds to the bandwidth of a channel.
A combined system for imaging and communication by laser signals including a telescope (10) in which the primary (1) and secondary (2) mirrors are shared between an imaging function and a function involving the emission of laser transmission signals. The accuracy required for the direction of emission (DE) of the laser transmission signals is obtained by additionally placing a geolocation device on board a satellite carrying the combined system. No coarse pointing assembly is used and it is also possible for the system to be devoid of any fine pointing assembly and target acquisition and tracking detector.
An apparatus and method are described for facilitating communication between a telecommunications network and a user device within a building. The apparatus has a first unit for mounting adjacent an external surface of a building, and a second unit for mounting adjacent an internal surface of the building so as to be separated from the first unit via an interface structure of the building, for example a window. The first unit has an antenna system to communicate with the telecommunications network over an external wireless communications link that employs signals in a frequency range that is attenuated by the interface structure to a degree inhibiting reception of the signals by a user device within the building. The apparatus further comprises access circuitry for provision within the building to provide an internal communications link with the user device, and the first unit comprises first transducer circuitry coupled to the antenna system whilst the second unit provides second transducer circuitry coupled to the access circuitry. The first and second transducer circuits are then arranged to cooperate to establish a direct wireless communications link through the interface structure between the first and second transducer circuits, to facilitate communication between the antenna system and the access circuitry. This hence enables a reliable connection to be established between the telecommunications network and a user within the building.
A device for an aircraft having at least one first communication with an air traffic control center. The device establishes a second communication with a remote assistance center and performs a first mixing of audio signals from the first communication or communications and of audio signals from the second communication and transmits the result to the pilot. The device also performs a second mixing of audio signals from the first communication or communications and of audio signals from the pilot and transmits the result to the remote assistance center by using the second communication. The device performs a relaying of commands received via the second communication to devices of the aircraft. An operator in the remote assistance center listens to the exchanges between the pilot and the air traffic control center and can exchange with the pilot and relieve him or her of certain tasks.
An measurement method and a terminal, where the method includes: determining, by a first antenna selection module in terminal, at least two measured antennas, setting the at least two measured antennas as a first measurement antenna, adding the first measurement antenna to an occupied antenna set; determining measurement duration of the first measurement antenna; performing a measurement operation on the first measurement antenna; determining, by a second antenna selection module, a second measurement antenna and measurement duration of the second measurement antenna based on the occupied antenna set and the measurement duration of the first measurement antenna, adding the second measurement antenna to the occupied antenna set; performing a measurement operation on the second measurement antenna; and determining, a measurement result of the first measurement antenna and a measurement result of the second measurement antenna when the measurement duration of the first measurement antenna ends.
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). A method for performing a beamforming operation in a wireless communication system supporting a full-duplex scheme includes acquiring reference information for allocating a resource, determining a user equipment (UE) combination of a transmission (Tx) UE and a reception (Rx) UE which is capable of sharing a resource from combinations of at least Tx UE and at least one Rx UE, based on the acquired reference information, and allocating a Tx antenna beam for the Tx UE of the UE combination and an Rx antenna beam for the Rx UE of the UE combination.
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may monitor for a beam scanning period indicator from a base station; configure an interval for beam scanning; and beam scan with a set of beams at the interval for beam scanning. In some aspects, a base station may configure an interval for beam scanning by a user equipment; selectively provide, to the user equipment, a beam scanning period indicator identifying the interval for beam scanning; and provide at least one beam from a set of beams in a synchronization codebook to enable the user equipment to perform beam scanning using the interval. Numerous other aspects are provided.
The present invention relates to a wireless access system supporting millimeter wave (mmWave), and provides a transmission/reception beam scanning method, a channel state information feedback method, and devices supporting the same. According to an embodiment of the present invention, a method for scanning a transmission/reception beam by a millimeter wave (mmWave) terminal in a wireless access system supporting mmWave may comprise the steps of: performing long term beam scanning in period N; transmitting feedback information including a first transmission beam identifier (Tx beam ID) acquired through the long term beam scanning to a mmWave base station; receiving an upper layer signal including reception beam scanning configuration information allocated for short term beam scanning; and performing the short term beam scanning in a reception beam scanning area on the basis of the reception beam scanning configuration information.
A pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system, such as long-term evolution (LTE), is disclosed. The system includes an apparatus of a base station. The apparatus may include: at least one transceiver, and at least one processor connected to the at least one transceiver, where the at least one processor is configured to transmit to a terminal, configuration information of reference signals for beam management regarding a transmit (Tx) beam of the BS or a receive (Rx) beam of the terminal, transmit the reference signals to the terminal, and the configuration information comprises information related to a number of repetitions of the reference signals.
Methods and systems are provided for dynamically delaying a calibration of an antenna. It is determined that there is a quantity of user devices above a predetermined threshold on a particular sector of an antenna associated with the base station, or that there is a quantity of user devices above a predetermined threshold in an MU-MIMO group on the particular sector of the antenna. Further, it is determined that there is an upcoming scheduled calibration event of the antenna, and based on the upcoming scheduled calibration event and the occurrence, the upcoming scheduled calibration event of the antenna is delayed or postponed.
Aspects of the subject disclosure may include, for example, a system for determining a usage pattern, and sending instructions to a plurality of waveguide systems to transmit or receive electromagnetic waves along a surface of each of a plurality of wires according to the usage pattern. Other embodiments are disclosed.
A method of performing a frequency scan at a radio includes placing the radio in an active mode and, while maintaining the radio in the active mode, for each of a plurality of target frequencies determining a coarse frequency tuning value based on the target frequency. The radio places a phase locked loop (PLL) in an open-loop configuration and while the PLL is in the open-loop configuration, programs the VCO with the coarse frequency tuning value. The radio programs the divider with a feedback adjustment based on the target frequency, places the PLL in a closed-loop configuration, and in response to the PLL reaching a settled state, performs an operation based on an output signal of the PLL.
A integrated circuit (IC) chip can include a root timer that generates a frame pulse based on a start trigger signal. The IC chip can also include a hardware clock control that provides a clock signal based on a selected one of the frame pulse and the synchronization signal provided from one of the root timer and another IC chip. The IC chip can further include a plurality of analog to digital converters (ADCs). Each of the plurality of ADCs being configured to sample an output of a respective one of a plurality of radio frequency (RF) receivers based on the clock signal.
The described technology is generally directed towards reducing the amount of data stored in a sequence of data blocks by combining deduplication and compression. According to an embodiment, a system can comprise a memory that can store computer executable components, and a processor that can execute the components stored in the memory. The components can comprise a data block identifier that can identify, for a sequence of data blocks, a first data block that corresponds to a first data, resulting in a first identified data block, and a deduplication component that can identify a second data block that corresponds to the first data, resulting in a second identified data block, wherein the deduplication component can replace the second identified data block with a key value corresponding to the first identified data block. Further, a compression component can compress the first identified data block, resulting in a compressed data block.
An apparatus is provided to calibrate an analog-to-digital converter (ADC). The apparatus includes a calibration circuitry coupled to an output of the ADC, wherein the calibration circuitry is to identify a maximum value and minimum value of the output of the ADC, and is to calibrate one or more performance parameters of the ADC according to the maximum and minimum values. The performance parameters include: gain of the ADC, offset of the ADC, and timing skew between the ADC and a neighboring ADC.
A counter distribution system includes an N bit counter to receive a first counting clock to generate a plurality of data bits including lower data bits on lower data bit lines and upper data bits on upper data bit lines. The upper data bits include at least one redundant bit to provide error correction for the counter distribution system. A plurality of latches is coupled to the N bit counter. Each one of the lower data bit lines and each one of the upper data bit lines is coupled to at least one of the latches. The latches are arranged into a plurality of groupings of latches. Each grouping of latches is coupled to a respective latch enable signal. Each latch in each grouping of latches is coupled to latch a respective one of the plurality of data bits in response to the respective latch enable signal.
A power gating switch is described at a local cell level of an integrated circuit die. In one example a plurality of logic cells have a data input line and a data output line and a power supply input to receive power to drive circuits of the logic cell. A power switch for each logic cell is coupled between a power supply and the power supply input of the respective logic cell to control power being connected from the power supply to the respective logic cell.
A proximity sensor includes a sensor cable that includes a first electrode wire and a second electrode wire arranged parallel to each other, an insulation covering both the first electrode wire and the second electrode wire, and a shield partially covering a surface of the insulation so as to form an opening, the first electrode wire and the second electrode wire being arranged to have different distances to the opening, and a detector circuit that includes a first capacitance detecting portion for detecting a first capacitance to be detected by the first electrode wire, a second capacitance detecting portion for detecting a second capacitance to be detected by the second electrode wire, and a differential output portion for outputting a difference between the first capacitance and the second capacitance.
A method of powering up a circuit includes powering up a latch circuit in a known latch state by applying a first power supply voltage differential of a first voltage domain across power supply terminals of the latch circuit. A current diode inhibits current diode in a current path between a latch node of the latch circuit and a power supply terminal when the power supply voltage differential is below a threshold voltage during the powering up in which the inhibiting prevents the latch circuit from switching from the known latch state during the powering up.
A gate driver for power semiconductors is disclosed. The gate driver includes modulation to modulate signals from a controller to a radio frequency (RF) range that is much higher than frequencies associated with conducted EMI. The gate driver also includes RF transformer and tank circuit to that couples the modulated signals, filters EMI, and provides galvanic isolation. The gate driver further includes a RF demodulator and unfolder circuit for converting the RF signal into a signal appropriate for controlling the gate of a power semiconductor for switching. Additionally, the disclosed gate driver provides active gate control using programmable waveforms with values that can range over a continuous range of voltages.
A transactional memory (TM) of an island-based network flow processor (IB-NFP) integrated circuit receives a Stats Add-and-Update (AU) command across a command mesh of a Command/Push/Pull (CPP) data bus from a processor. A memory unit of the TM stores a plurality of first values in a corresponding set of memory locations. A hardware engine of the TM receives the AU, performs a pull across other meshes of the CPP bus thereby obtaining a set of addresses, uses the pulled addresses to read the first values out of the memory unit, adds the same second value to each of the first values thereby generating a corresponding set of updated first values, and causes the set of updated first values to be written back into the plurality of memory locations. Even though multiple count values are updated, there is only one bus transaction value sent across the CPP bus command mesh.
The present invention is in the field of programmable pulse width modulator (PWM) controller comprising filters and a mixer, such as for use in a digital audio converter and digital amplifier controller, a chip comprising said PWM controller, a device comprising said PWM controller or said chip, as well as uses thereof.
In circuitry to capture differences between magnitudes of first and second comparator input signals in capture operations defined by a clock signal, first and second nodes are connectable to a tail node receiving a cock-signal-independent bias current along first and second paths. During each capture operation, switching circuitry controls connections between the tall node and the first and second nodes based on the input signals to divide the bias current between the first and second paths depending on the input signal magnitude difference. The switching circuitry comprises first and second transistors arranged such that conductivity of connections between the tail node and the first and second nodes Is controlled by the magnitudes of the input signals, and third and fourth non-clocked transistors controlled by a clock-signal independent gate bias signal.
A semiconductor device that can perform voltage monitoring with a small circuit area is provided. The resistive subdivision circuit RDIV performs the resistive subdivision of the input voltage Vin by means of the input ladder resistor (R1-R4), and drives the nMOS transistors MN1-MN3 by the subdivided input voltages Vi1-Vi3 each having different resistive subdivision ratios, respectively. The pMOS transistor MP0 is provided in common for the pMOS transistors MP1-MP3, and configures a current mirror circuit with each of the pMOS transistors MP1-MP3. The bias current generating circuit IBSG supplies a bias current to the pMOS transistor MP1.
A system includes: a power supply; an adaptively biased power event detection comparator; and an adaptive bias circuit for the adaptively biased power event detection comparator. The adaptively biased power event detection comparator is configured to compare a first input corresponding to a voltage level of the power supply with a second input corresponding to a reference voltage. The adaptive bias circuit is configured to increase a bias current for the adaptively biased power event detection comparator based on the voltage level of the power supply decreasing to be closer to the reference voltage.
An apparatus and a method for multiplying a frequency of an input signal are provided. The apparatus may include a main differential device for converting the input signal into a first differential signal and a second differential signal, a first multiplying device for outputting a first signal obtained by multiplying a frequency of the first differential signal, a second multiplying device for outputting a second signal obtained by multiplying a frequency of the second differential signal, and a compositing device for outputting a third signal obtained by combining the first signal and the second signal to remove a fundamental frequency component.
In a comparator of an analog-to-digital converter, an input signal is input to a control terminal of each of a plurality of signal input transistors. A signal input transistor selection section selects any one of the plurality of signal input transistors, and generates a current in response to a difference between the input signal and a reference signal to flow in the differential pair configured with the selected signal input transistor and a reference input transistor. A load section converts, at a time of a change of a current flowing in any one of the plurality of signal input transistors and the reference input transistor in response to the difference, the change of the current into a change of a voltage, and outputs the change of the voltage as a result of comparison between the input signal and the reference signal.
A circuit includes a random oscillation number generator (RONG) configured to generate first and second pulse signals at first and second RONG outputs. A first counter is coupled to the first RONG output and generates a first count at a first counter output. A second counter is coupled to the second RONG output and generates a second count at a second counter output. A selection circuit is coupled to the first and second counter outputs and to the first and second RONG outputs. A first pulse shaper is connected between the first RONG output and the first counter, and a second pulse shaper is connected between the second RONG output and the second counter.
Provided is a level shifter which can retain an operation margin and enhance an exceeded-breakdown-voltage preventing effect. The level shifter in an embodiment includes an exceeded-breakdown-voltage prevention circuit between a pair of first-conductivity-type cross-coupled transistors and a pair of second-conductivity-type input transistors. The exceeded-breakdown-voltage prevention circuit includes first-conductivity-type first transistors and second-conductivity-type second transistors which are coupled in series to each other, and first-conductivity-type third transistors coupled in series to the first and second transistors on a higher-potential side.
Clock generation and control in a semiconductor system having process, voltage and temperature (PVT) variation. A semiconductor device may include at least first and second ring oscillators, each disposed at locations respectively closest to first and second logic circuits of an operation circuit, and generating first and second oscillating signals. A detecting circuit is configured to perform a predetermined logic operation on the first oscillating signal and the second oscillating signal to generate a first clock signal. A calibration circuit is configured to receive the first clock signal from the detecting circuit and perform a delay control on each of the first ring oscillator and the second ring oscillator to generate a second clock signal for operating the operation circuit.
Embodiments of methods and systems for attenuator phase compensation are described. In an embodiment, a method for attenuator phase compensation involves determining a phase compensation value for an attenuator based on an attenuation configuration of the attenuator and performing phase compensation according to the phase compensation value to maintain a constant phase response.
In a multiplexer, input or output terminals of four acoustic wave filters are connected to, among a plurality of terminals provided on piezoelectric substrates, antenna terminals connected to an antenna connection terminal; the four acoustic wave filters include a first acoustic wave filter and a second acoustic wave filter that is located at a farther position from the antenna connection terminal than a position of the first acoustic wave filter in a plan view of a substrate; and among the plurality of terminals, the terminals located at the closest position to the antenna connection terminal in the plan view of the substrate are connected to the second acoustic wave filter as the antenna terminals.
A circuit for implementing an operational transconductance amplifier (OTA) based on telescopic topology, wherein cascode transistors of the operational transconductance amplifier (OTA) are self-biased without using additional biasing circuitry, which not only reduces power consumption but also achieves high gain without extra current, and each cascode stage of the OTA has a pair of transistors so that the swing of the output differential signals of the OTA can be completely symmetrical so as to benefit second-order harmonic rejection, CMRR and PSRR.
Various embodiments of the present technology may comprise methods and apparatus for driver calibration. The methods and apparatus may comprise various circuits and/or systems to minimize an offset output current (e.g., a drive current) due to an offset voltage in an operational amplifier. The methods and apparatus may comprise a current comparator circuit and a replica circuit that operate in conjunction with each other to monitor the drive current and provide a feedback signal, which is then used to adjust the drive current and improve the accuracy of the drive current.
The present disclosure provides a trans-impedance amplifier, comprising: an inverting amplifier circuit, having an input end and an output end. The input end is coupled to an optical diode and is used for accessing an input voltage signal, and the output end is used for outputting an amplified voltage signal. The inverting amplifier circuit comprises at least three sequentially-connected amplifier units. Each of the amplifier units comprises two mutually-coupled N-type transistors, wherein one N-type transistor is used for receiving an input voltage, and the other N-type transistor is used for receiving a DC voltage signal. A common connection end of the two N-type transistors is used for outputting an amplified voltage signal, and the N-type transistor used for receiving the DC voltage signal adopts a native NFET. The trans-impedance amplifier further comprises a feedback resistor coupled to the input end and the output end of the inverting amplifier circuit.
A differential amplifier circuit includes a differential pair including a first field-effect transistor (FET) and a second FET, a first current source that generates a current which flows in the first FET and the second FET, and an output circuit that outputs an output voltage corresponding to a difference between a gate voltage of the first FET and a gate voltage of the second FET in accordance with an operation of the differential pair. A back gate of the first FET is connected to a gate of the first FET, and a back gate of the second FET is connected to a gate of the second FET. A first feedback voltage corresponding to the output voltage is input to the gate of the second FET.
Apparatus and methods for power amplifiers isolated by differential ground are provided. In certain implementations, a mobile device includes a transceiver that generates a plurality of radio frequency input signals including a first radio frequency input signal and a second radio frequency input signal, and a plurality of differential power amplifiers including a first differential power amplifier that provides amplification to the first radio frequency input signal and a second differential power amplifier that provides amplification to the second radio frequency input signal. The first differential power amplifier and the second differential power amplifier each operate with differential ground so as to provide isolation between the first differential power amplifier and the second differential power amplifier.
Disclosed are a photovoltaic module and a photovoltaic system including the same. The photovoltaic module includes a solar cell module, a converter to convert a DC voltage from the solar cell module, an inverter to convert the DC voltage from the converter into an AC voltage, and a plug to outwardly output the AC voltage from the inverter, the plug having a ground terminal. The ground terminal is electrically connected to a ground of the inverter, and the ground of the inverter is electrically connected to a ground of the solar cell module. Thereby, the AC voltage from the photovoltaic module is directly supplied to an outlet inside or outside a building.
A method for cleaning a solar power system includes operating a solar power system that comprises a plurality of solar power cells mounted on a spherical frame; rotating the spherical frame to move the plurality of solar power cells into a volume of a hemispherical reservoir that is mounted to the spherical frame; rotating the spherical frame to move the plurality of solar power cells into a solar cell cleaning solution fluid enclosed within the volume of the hemispherical reservoir defined between an interior surface of the reservoir and the spherical frame; and removing, with the solar cell cleaning solution, a plurality of particulates attached to the plurality of solar power cells.
A motor drive apparatus driving a motor as a three-phase motor converting direct power into three-phase alternating power, includes: inverter modules equivalent in number to phases of the motor; and a control unit generating PWM signals used to drive the inverter modules with PWM. The inverter modules each include a plurality of switching element pairs connected in parallel, each of the switching element pairs including two switching elements connected in series.
A method for identifying the discrete instantaneous angular speed of electromechanical systems in which electrical rotating machinery is used and in which at least one electrical signal is measured during an operation of the electromechanical system. The method includes measuring analog stator current signals and analog stator voltage signals for at least one phase A, B, C, converting the measurements into a digital discrete form, transmitting the digital discrete signals to a computer device wherein data analysis is performed in a processor unit on the basis of a simplified mathematical model of the dynamics of the motor or generator. During the data analysis an average rotor time constant is calculated, an average supply frequency value is identified, an average angular speed is obtained, and an instantaneous phase difference between the discrete stator current signals and the discrete stator voltage signals is determined. The discrete instantaneous angular speed is identified by combining the average supply frequency value, the instantaneous phase difference between the discrete stator current signals and the discrete stator voltage signals, the average rotor time constant, and a number of pole pairs of the electric motor, given by the user. The result of combining the data is stored in a memory of the processor unit.
Disclosed is a sensorless control system for a permanent magnet synchronous machine. The sensorless control system includes a counter electromotive force estimation unit configured to estimate a counter electromotive force using a phase voltage reference applied to an inverter and a phase current applied from the inverter to the permanent magnet synchronous machine, and a speed estimation unit configured to estimate an angular velocity and an electrical angle of a rotor of the permanent magnet synchronous machine, and the counter electromotive force estimation unit according to one embodiment of the present disclosure may maintain robust performance at a low speed by modifying some portion of a conventional Luenberger observer.
Included herein is a circuit comprising resistors, capacitors, relays, diode bridges, TRIACs, and DIACs mounted to a substrate. The circuit may be electrically connected to a user device containing a wide range of types and specifications of AC induction motors. The circuit may be installed “plug-and-play” onto a user device, without the need for tools, custom installation or deconstruction of a user device. Upon user direction or automatically, the circuit may inject DC current into the user tool which generates a stationary magnetic field inside the AC induction motor causing deceleration/arrestment of the AC induction motor's rotor. The circuit may prevent unintended acceleration of the rotor upon powering on the user device. Also included is a method for prevention of unintended acceleration of the rotor upon powering on the user device. Also included is a method for decelerating/arresting an AC induction motor.
A switched mode power supply controller includes a latch having an output for providing a drive signal, an off-time control circuit operating in valley switching and frequency reduction modes controlling an off-time of the latch based on at least a zero current detect signal, and an on-time control circuit resetting the latch in response to a current sense signal exceeding a feedback voltage representative of a load and to the current sense signal exceeding a modulated peak current threshold value. The on-time control circuit resets the latch in response to a current sense signal exceeding a feedback voltage representative of a load and to the current sense signal exceeding a peak current threshold value. In the frequency reduction mode, the on-time control circuit modulates the peak current threshold value by increasing the peak current threshold value by a predetermined amount.
According to an implementation, a resonant converter for short-circuit protection includes an oscillator, a short-circuit detector configured to detect a short-circuit condition in a component of the resonant converter, and a pulse width modulation (PWM) controller configured to control the oscillator in a PWM mode before short-circuit protection is triggered. The oscillator, when in the PWM mode, is configured to generate a first clock signal for driving a first power switch and a second clock signal for driving a second power switch.
A voltage regulator circuit included in a computer system may include multiple phase circuits each coupled to a regulated power supply node via a corresponding inductor. The phase circuits may modify a voltage level of the regulated power supply node using respective control signals generated by a digital control circuit that processes multiple data bits. An analog-to-digital converter circuit may compare the voltage level of the regulated power supply node to multiple reference voltage levels and sample the resultant comparisons to generate the multiple data bits.
Systems and methods of fault tolerant power conversion include an inverter with a plurality of inverter phase legs. Each phase leg includes a positive switch, a negative switch, and a bi-directional midpoint switch. Redundant phase leg includes a positive redundant switch connected between the positive switches and the bi-directional midpoint switches. The redundant phase leg includes a negative redundant switch connected between the negative switches and the bi-directional midpoint switches. Upon detection of a fault condition in at least one switch of the plurality of inverted phase legs, one of the positive redundant switch and the negative redundant switch is closed to bypass at least one switch with the fault condition to maintain operation of the power converter.
A high rotor pole switched reluctance machine (HRSRM) employs an axial and radial mirroring concept and is represented by a first Multiple Rotor Pole (MRP) formula and second Multiple Stator Pole (MSP) formula. A multiple rotor HRSRM comprises at least two rotors each having a plurality of rotor poles and at least two stators having a plurality of stator poles. The at least two rotors and the at least two stators are positioned about a central axis with the stator placed between the rotors. In other embodiments, the number of stators equals the number of rotors and effectively operate as a single stator and rotor. In yet another embodiment, the effective single stator and rotor type high rotor pole switched reluctance machine is realized as single stator and rotor positioned concentrically around a central axis.
An electric power train for an automotive vehicle includes an electric motor, a power electronics system, a first casing containing the power electronics system, a second distinct casing that contains the motor, and a third distinct casing. The first casing includes a bottom and an opening for access to the power electronics system. The second casing bears on an exterior wall of the first casing bottom. The opening is opposite the second casing. The third casing is assembled on the first casing and contains an electric filtering system. The first casing includes a platform, which juts out relative to at least one portion of the first casing and on a face of which platform an assembly contour for assembling the third casing on the first casing is defined. The assembly contour is substantially parallel to an axial direction of the motor. The platform overhangs the second casing.
A servo motor system and method has been developed to provide speed, orientation, location, and/or direction detection using a single inductive sensor. Direction, orientation, speed, and/or location detection are detected using a single channel inductive sensor in a servo motor control system. Mechanical control systems using servo motors are easily upgraded with added safety, precision control, and automation using the inductive sensor system described herein.
A rotor may include a rotation shaft, a magnet on an outer peripheral side, a holding member holding the rotation shaft and the magnet, and a plurality of recessed parts provided in an end face of the magnet in an axial line direction of the rotation shaft so as to be separated from each other in a circumferential direction. A surface of each of the recessed parts is formed in a spherical shape, the holding member has a flange portion which covers the end face of the magnet from an end on an inner peripheral side of the end face of the magnet to an outer peripheral side with respect to the plurality of the recessed parts, and the flange portion is adhered to the surfaces of the recessed parts.
A rotor for a rotating machine having a number n of poles pairs p that define corresponding direct pole axis (D-axis) and quadrature axis (Q-axis), and including a rotor core having a plurality of magnetically conductive laminations stacked in a rotor axial direction z. The magnetically conductive laminations include cut-out portions forming a plurality of flux barriers extending continuously with respect to the Q axis from a first rim portion to a second rim portion of the magnetically conductive laminations, the flux barriers being radially alternated by flux paths. The plurality of flux barriers form a corresponding plurality of cavities extending in the rotor core along the axial direction z, at least some of the plurality of cavities being filled with an electrically conductive and magnetically non-conductive material. The rotor further includes a plurality of channels spaced circumferentially and along the axial direction z, each of the channels transversally connecting two adjacent cavities of the plurality of cavities, at least some of the channels being filled with a non-magnetically conductive material.
An electromagnetic machine includes a motor housing defining a cavity therein, and a stator disposed within the cavity. The stator has an external surface and a plurality of mounting ears each configured to receive a fastener and extending from the external surface towards the motor housing. The assembly includes a tunable insert ring disposed between the motor housing and the stator. The tunable insert ring and the stator define at least one cooling channel therebetween. The tunable insert ring encircles the external surface and includes a plurality of projections each extending towards and disposed in contact with the stator to thereby stiffen the electromagnetic machine and minimize vibration of the stator within the motor housing. A device including the electromagnetic machine is also described.
A stator having a structure in which an insulating paper is easily inserted into a slot and a method for manufacturing the same are provided. The stator includes a stator core (21) alternately having teeth (32) and slots (34) in a circumferential direction, a coil (33) installed at the stator core (21), and an insulating paper (60) provided around the coil (33) while being accommodated in the slot (34) and having a folded portion (64) in a lengthwise direction of the slot (34).
An electronic device performing communication with a powerless sensor is provided. The electronic device includes a wireless charging module configured to wirelessly transmit power to a powerless sensor; and a communication module configured to receive data that is sensed in the powerless sensor using the wirelessly transmitted power.
Apparatus and methods for dual-mode wireless power transfer are described. Two power transmit coils may be configured to provide magnetic resonant and magnetic inductance wireless power transfer from a same charging area of a wireless power transmitter. The coils and magnetic backing may be arranged to provide similar power transfer performance for the two power transfer methodologies.
A power supply system and method includes a power grid input unit and a diesel generator input unit, separately used for supplying an alternating current to a power supply unit. An automatic transfer switch unit is connected to the power grid input unit and the power supply unit or connected to the diesel generator input unit and the power supply unit, which is used for converting the received alternating current into a direct current. A control unit, which is used for monitoring a current load current and current diesel generator power, determines when to turn off a preset number of power supply loads according to a magnitude relationship between the current diesel generator power and the current load power, as well as according to priority levels of current loads. The power supply system also includes a plurality of loads and at least one storage battery pack.
A method of controlling the charging of a battery includes determining plural pieces of state information of a battery unit based on a sensed physical quantity of the battery unit, calculating a weight of the battery unit based on the pieces of state information and a correspondence value of each of the plural pieces of state information, and defining, based on the weight, control information corresponding to an input physical quantity in a charging physical quantity of the battery unit, where the input physical quantity is input to a converter of the battery unit.
A battery pack and a protection method of the battery pack are provided. The battery pack includes a battery including battery cells, a balancing unit for balancing voltages between the battery cells, a first switch on a high-current path of the battery, and a battery management unit for monitoring a voltage, a temperature, and a current of the battery, for applying a control signal for turning off the first switch, and for operating the balancing unit when the first switch is not turned off in response to the control signal.
A battery charge system includes an on board charge module, a high voltage battery pack unit and a controller. The on board charge module includes a power conversion device, a switching unit coupled to the power conversion device, and an electrothermal element coupled to the switching unit. The power conversion device includes an AC/DC converter and a bidirectional DC/DC converter. The AC/DC converter has an input terminal coupled to an AC terminal, and an output terminal coupled to an input terminal of the bidirectional DC/DC converter. The high voltage battery pack unit includes a first switching element and a high voltage battery pack. The high voltage battery pack is coupled through the first switching element to an output terminal of the bidirectional DC/DC converter. The controller is coupled to the power conversion device and the switching unit, and is configured to control the power conversion device and the switching unit.
Described herein are redox flow batteries comprising a first aqueous electrolyte comprising a first type of redox active material and a second aqueous electrolyte comprising a second type of redox active material. The first type of redox active material may comprise one or more types of quinoxalines, or salts thereof. Methods for storing and releasing energy utilizing the described redox flow batteries are also provided.
In accordance with some embodiments, the present disclosure is directed to systems having a fuel cell and a turbine generator, each capable of providing electrical power to a utility grid, and methods for operating the same. The system may have a main AC bus which is coupleable to the utility grid. The fuel cell may be coupled to main AC bus through an inverter. The turbine generator may be coupled to the main AC bus through a series of inverters, one of which may include the inverter by which the fuel cell is connected to the main AC bus. One or more load banks may be provided to provide a load for electrical power generated from the fuel cell, turbine generator, or both in case the system is disconnected from the utility grid. Further support and backup systems may be provided.
Disclosed herein is a method and system for sharing power or energy across various power supply and control modules. More specifically, disclosed herein are systems and methods for distributing energy. As explained herein, the method discloses receiving, at a microgrid, data from a plurality of data sources. The data is then analyzed to forecast power needs associated with the microgrid. Using the data, the microgrid may determine whether and when to share power with the requesting module.
The present invention realizes a power supply device that can, even if an abnormality occurs in a power supply unit, block a current from flowing into the path from the other power supply unit. A power supply device (1) includes: a first conductive path (31) that is a path for power between a first power supply unit (91) and a load (94); a second conductive path (32) that is connected to the first conductive path (31) and to a second power supply unit (92); a first switch unit (34) that is provided on the first conductive path (31) between a connection part (33), at which the first conductive path (31) is connected to the second conductive path (32), and the first power supply unit (91), and switches to an electrically disconnected state, in which the first switch unit (34) blocks a current from flowing in either direction, and to an electrically connected state, in which the first switch unit (34) allows a current to flow therethrough; a second switch unit (35) that is provided on the second conductive path (32) between the connection part (33) and the second power supply unit (92), and switches to an electrically disconnected state, in which the second switch unit (35) blocks a current from flowing in either direction, and to an electrically connected state, in which the second switch unit (35) allows a current to flow therethrough; and a control unit (39) that controls respective switching operations of the first switch unit (34) and the second switch unit (35).
The power system may include a main circuit arrangement having a power source, a load and a circuit breaker. The power system may additionally include an energy harvesting circuit arrangement connected to the main circuit arrangement. The energy harvesting circuit arrangement may include an operating switch and an energy harvester. The power system may also further include a trigger mechanism, which may be configured to, when detecting a current above a predetermined value in the main circuit arrangement, trigger the circuit breaker to switch from a closed mode to an open mode. The trigger mechanism may also be configured to trigger the operating switch to switch from an open mode to a closed mode for a predetermined duration, and back to the open mode after the predetermined duration, thereby storing electrical energy in the energy harvester.
The system for connecting submarine cables and especially umbilical cables for renewable marine energy farms, is characterized in that it includes an intermediate part for connecting the cables, adapted to be placed between ends for connecting the cables and includes both electrical and mechanical connections for the cables.
The invention relates to substructure (1) for increasing the earthquake resistance of at least one high-voltage component (2), in particular a choke coil (3). The substructure (1) comprises a platform (4) which is designed to receive the high-voltage component (2) in a load-bearing manner and which is suspended on a support device (6) of a support structure (7) by means of at least three tensioning means (5). The platform (4) is connected to the tensioning means (5) by means of a first articulated connection (22), and the tensioning means (5) are connected to the support device (6) by means of a second articulated connection (23), said support device (6) being supported on the ground (9) by means of at least three supports (8). The supports (8) are made of high-voltage insulators (11) made of an electrically insulating material, said high-voltage insulators electrically insulating the at least one high-voltage component (2) from the ground potential and supporting the at least one high-voltage component on the ground (9) in a load-bearing manner.
An internal combustion engine having: a housing with at least one cylinder and a pre-chamber spark plug; the cylinder has a piston that is able to move in the housing and delimits a combustion chamber contained in the housing; the combustion chamber has a compressed volume when the piston is at top dead center; the pre-chamber spark plug has a body, an external thread at its front end, a passage, an insulator positioned in the passage, a center electrode protruding from the front end of the insulator, and a pre-chamber-forming cap that is placed at the front end of the body and delimits a pre-chamber. The cap shields the center electrode from the combustion chamber and has at least one opening, which enables a gas exchange between the pre-chamber and the combustion chamber. In one embodiment, the total volume of the pre-chamber makes up at least 0.65% of the compressed volume of the combustion chamber.
A transmission cable including a signal wire and a shielding layer is provided. The signal wire is configured to transmit a differential signal provided by an eDP interface or a V-by-one interface. The shielding layer is configured to cover the signal wire. An end of the signal wire receives the differential signal provided by the eDP interface or the V-by-one interface, and another end of the signal wire outputs the differential signal provided by the eDP interface or the V-by-one interface. In addition, a display system is also provided.
An assembly includes: a coaxial cable; a coaxial connector having an inner contact and an outer conductor body, the outer conductor body having a rear portion electrically connected with the outer conductor of the coaxial cable to form a joint; and a protective boot that overlies a forward portion of the coaxial cable and the rear portion of the outer conductor body to protect the joint between the coaxial cable and the connector. The boot comprises a body with a bore extending therethrough and includes a cable sealing section at one end that interference fits with the jacket of the cable to provide sufficient support for coaxial cable and creates a first seal with the jacket of the cable. The boot further including a feature within the bore that engages the outer conductor body forward of the electrical connection between the outer conductor and the outer conductor body.
A method of connecting cables of a unitary pipe section that is to be assembled vertically to an undersea fluid transport pipe, by positioning around a low end of the unitary pipe section (40) a female annular connector (2) having connected thereto cables (14) extending along the unitary pipe section; positioning around a high end of the pipe (42) a male annular connector (24) having connected thereto cables (32) extending along the pipe; and connecting together the male and female connectors by sliding them vertically towards each other while assembling the unitary pipe section on the pipe.
Difficulty of manufacturing is reduced while providing waterproof property with respect to a contact portion with an aluminum core wire. A barrel portion of a crimp terminal includes an inner barrel piece and an outer barrel piece, and an inner surface is provided with a plurality of recesses arranged dispersedly, and a groove extending in in a first region at the outer barrel piece, a second region at a location close to a terminal portion and a third region on an opposite side. A second portion of a seal member formed from adhesive gel is formed into a strip-like shape having width that allows a part thereof to be pushed out after crimping, and a first seal portion is formed into a shape corresponding to the groove and having narrower width than the second seal portion.
A method of assembling a vehicular camera includes providing a front housing portion and a rear housing portion and attaching a circuit board at the front housing portion. A one-piece coaxial connecting element is provided at the rear housing portion. With the coaxial connecting element provided at the rear housing portion, a first coaxial cable connector extends outward from the outer side of the rear housing portion and a second coaxial cable connector extends inward from the inner side of the rear housing portion. As the rear housing portion is mated with the front housing portion, the second coaxial cable connector engages the third coaxial cable connector at the circuit board to electrically connect the coaxial connecting element with circuitry at the circuit board. The first coaxial cable connector is configured to connect to a coaxial cable of a vehicle when the vehicular camera is disposed at the vehicle.
A battery terminal clamp has a body portion with an intermediate aperture for engaging a battery post. The clamp further includes a threaded rod extending upwardly relative to the body portion at an angle to the horizontal of between 45° and 60°. A battery pull bar extends from one side wall to the opposite side wall of the body portion. A wedge-shaped element abuts one side wall of the body portion. Together with the battery pull bar, the wedge-shaped element alternately effects a reduction in, or increase in, the size of the intermediate aperture.
An earth terminal mounting structure includes a boss protruding from a conductive case; and an earth terminal fixed to a distal end surface of the boss. The earth terminal is provided with a terminal-side stopper that extends along a side surface of the boss. A boss-side stopper having a protrusion shape is provided on the side surface of the boss. The boss-side stopper faces the terminal-side stopper in a circumferential direction of the boss. The terminal-side stopper and the boss-side stopper restrict rotation of the earth terminal in a clockwise direction and in a counter-clockwise direction.
A conductor connection contact element for clamping an electrical conductor, having a power rail piece and a clamping spring. The power rail piece is formed from a sheet-metal part with an oppositely situated second side wall, a base section and an oppositely situated cover section. The side walls, together with the base section and the cover section, border a conductor insertion channel. The clamping spring is arranged on the power rail piece. The clamping spring has an abutment section and a clamping section with a clamping edge for clamping the electrical conductor. The abutment section is arranged on the base section of the power rail piece. The freely movable end of the clamping section extends toward the cover section. An actuation section which is accessible to an actuation tool lies adjacent to the clamping edge in the direction of the side wall.
A direct clamp terminal for connecting a conductor in the form of a flexible stranded conductor includes a housing with a chamber and an insertion conduit for inserting the conductor into the chamber. A bus bar or a clamping cage is provided in the housing and a clamping spring is located in the chamber and acts as a compression spring for securing the electrical conductor to the bus bar or the clamping cage in the area of a clamping point. The clamping spring has a clamping limb that can be pivoted about a pivoting axis and that can be shifted from a detent mode in which it is locked in a detent position into a clamping mode in which it is released from the detent mode and presses the electrical conductor against the bus bar or the clamping cage. The clamping limb can be released from the detent mode using two different shifting devices.
An adapter structure for transferring an electromagnetic signal between an electronic component and an antenna, the adapter structure includes an adapter body having a base surface. The adapter structure further includes at least one ridged adapter waveguide channel, wherein the at least one adapter waveguide channel extends from the base surface into the adapter body. The adapter structure further includes an electromagnetic band gap structure with a plurality of band gap elements, wherein the band gap elements are spaced apart relative to each other, project from the base surface and have a front face spaced apart from the base surface. At least one band gap element is arranged as extension of a ridge of an associated adapter waveguide channel.
A millimeter-wave antenna system includes: an array of radiators comprising a first radiator and a second radiator, each of the first radiator and the second radiator being configured to radiate millimeter-wave energy; and an insulator disposed at least partially between the first radiator and the second radiator and disposed and configured to intercept first near-field energy radiated by the first radiator to inhibit the first near-field energy from being received by the second radiator, and to intercept second near-field energy radiated by the second radiator to inhibit the second near-field energy from being received by the first radiator, the insulator being configured to reflect the first near-field energy away from the first radiator and away from the second radiator and to reflect the second near-field energy away from the first radiator and away from the second radiator.
Embodiments of an aperture expansion flap are disclosed. An aperture expansion flap may be used in conjunction with an antenna to expand an effective aperture of the antenna beyond its physical area, geometry, and orientation. An aperture expansion flap may include one or more resonators which may be tuned to adjust a reflection and/or refraction phase of an incident wireless signal, such that the wireless signal may be reflected and/or refracted at angle of reflection and/or refraction that is different than an angle of incidence.
An antenna array assembly comprises a ground plate, an array of radiator elements disposed in a spaced relationship with a first face of the ground plate between first and second substantially parallel conductive walls projecting from the first face of the ground plate, and a first and second conductive plate. Each of the first and second conductive plates is electrically isolated from the ground plate, and each is disposed in an upstanding relationship to the first face of the ground plate in a substantially parallel relationship with the first and second conductive walls. This provides reduced radiation in at least one direction in the hemisphere on the opposite side of the ground plate to the first face.
An antenna device includes an antenna base including a plurality of first fitting parts, the plurality of first fitting parts being arranged with mutual spaces therebetween in a periphery edge part of the antenna base, an antenna case fixed to the antenna base, an antenna part arranged in a space enclosed by the antenna base and the antenna case, and a cover member including a plurality of a second fitting parts, each of the plurality of the second fitting parts fitting with each of the plurality of the first fitting parts.
Multiple-input-multiple-output (MIMO) antenna devices and methods of using and fabricating the same are provided. A MIMO antenna device can include a substrate that is capable of being folded and an antenna element disposed thereon. The antenna element can be disposed on the substrate in a polygon shape such as a rectangle or a square. The substrate can have predefined folding lines such that the substrate can be folded into different positions.
Provided are an antenna unit and a wireless power transmission module. There is provided an antenna unit that includes a circuit board, and a first antenna pattern formed on a surface of the circuit board for wireless power transmission and formed of a single conductor including a plurality of windings. The single conductor has a different line width depending on position. There is provided a wireless power transmission module that includes any one of the antenna units, and a shielding unit disposed on one surface of the antenna unit and configured to shield a magnetic field.
An antenna. The antenna includes a plurality of loop antennas sharing a common gap. The antenna also includes a nonlinear mixing component connected to the gap and configured to collect energy from at least one of the plurality of loop antennas.
There is disclosed a mobile terminal including a display unit; a metal bracket comprising a middle frame provided in a rear surface of the display unit; and a side frame partially distant from the middle frame and configured to define a lateral surface; a main board loaded in a rear surface of the bracket; a rear case configured to cover the main board and define an external appearance of a rear surface; and a first conductive pattern formed in an inner surface of the rear case, wherein the main board comprises a first feeding portion connected with the side frame; a second feeding portion connected with the first conductive pattern; and a first grounding portion connected with the side frame and the first conductive pattern and located between the first feeding portion and the second feeding portion.
According to various embodiments, there may be provided an electronic device including a housing having a plurality of sides, a first conductive member constructing at least part of the plurality of sides, a second conductive member disposed inside the housing, a first sensor circuit which provides a first output indicating a first capacitance value related to the first conductive member and/or a change to the first capacitance value, a second sensor circuit which provides a second output indicating a second capacitance value related to the second conductive member and/or a change to the second capacitance value, and a control circuit which receives the first and second outputs from the first and second sensor circuits. In addition, other embodiments are also possible.
Various arrangements for aligning a satellite antenna is presented. An expected date and an expected time for an expected conjunction of the satellite antenna, a satellite that transmits data to a remote terminal and the sun may be determined using positional data. A signal may be received by the antenna that comprises a data transmission from the satellite and interference from the sun. Based on the received signal, a date and time during which an interference level is at a peak interference level can be determined. An azimuthal or elevational alignment for the satellite antenna to be aligned with the satellite based on the time during which the interference level is at the peak interference level may be determined. An alignment of the satellite antenna may be performed based on the determined azimuthal or elevational alignment.
An in-line resonator filter has a linear array of three or more conductors. A first pair of adjacent conductors has inductive main coupling and oppositely signed capacitive main coupling, while a second pair of non-adjacent conductors has inductive cross-coupling. The first and second pairs have one conductor in common. Between the second pair of non-adjacent conductors, there is no direct ohmic connection that provides the corresponding inductive cross-coupling. The oppositely signed capacitive main coupling compensates for at least a portion of the inductive main coupling between the first pair of adjacent conductors. The in-line resonator filter is able to provide one or more transmission zeros without requiring any discrete bypass connectors that provide direct ohmic connection between pairs of non-adjacent conductors. As such, the in-line resonator filters can be smaller, less complex, and less susceptible to damage.
A cooling device for stored energy sources, in particular for motor vehicles, is provided. The cooling device includes: multiple separate cooling modules, through which coolant can flow, for absorbing heat from the stored energy source, each module having an inflow and an outflow; a common feed line, from which the inflows of the cooling modules branch off; and a common discharge line, into which the outflows of the cooling modules open.
The invention relates to a temperature sensor (5) for measuring a temperature of a battery system (1) for storing electrical energy and also for supplying an electric motor of a motor vehicle with electrical energy. The temperature sensor (5) has a sensor head (6) and connection wires (7) electrically coupled to the sensor head. At least one of the connection wires (7) is at least partially formed as a spring element (8) or forms at least part of a spring element (8), wherein the spring element (8) is formed as a helical spring or as twisted. The invention further relates to a battery system (1) with at least one temperature sensor (5) for measuring a temperature of at least one battery cell (3), wherein the temperature sensor (5) has at least one spring element (8), which is mechanically attached to a sensor head (6) of the temperature sensor (5) and is fastened to the battery management system (4) in such a way that the sensor head (6) is pressed by the spring element (8) onto a measuring point (9) on a battery unit (2) of the battery system (1). The invention also relates to a method for fitting such a battery system (1).
Provided is a plate-shaped battery cell in which electrode leads are located at one side end portion of a battery case including an excess sealing portion of a thermally-welded or adhesive structure for sealing an electrode assembly. the battery cell includes: a Protection Circuit Module (PCM) assembly having one or more safety elements for preventing overcurrent, wherein the PCM assembly includes a PCM and a conductive lead plate for electrically connecting the electrode leads, wherein the lead plate includes: an electrode lead connection portion positioned at one side end portion of the lead plate for electrically connecting the PCM and the electrode lead; a PCM connection portion located at the other side end portion of the lead plate for connecting to a connection portion of a printed circuit board on which a protection circuit is formed; and a bent portion extending from the electrode lead connection portion to be bent to face the outer surface of the battery case in order to prevent damage to the battery case occurring during a process of connecting the electrode lead to the electrode lead connecting portion.
An electrolytic solution for a power storage device, the electrolytic solution containing water as a solvent, wherein an amount of the solvent is greater than 4 mol and not greater than 15 mol with respect to 1 mol of an alkali metal salt.
A method of manufacturing an electrode laminate, which includes an active material layer and a solid electrolyte layer formed on the active material layer, includes: an active material layer forming step of forming an active material layer; and a solid electrolyte layer forming step of forming a solid electrolyte layer on the active material layer by applying a solid electrolyte layer-forming slurry to the active material layer and drying the solid electrolyte layer-forming slurry. In this method, a surface roughness Ra value of the active material layer is 0.29 μm to 0.98 μm when calculated using a laser microscope.
Biological material is used to build up biological cathode electrodes (biological cathode) and biological batteries, particularly biological metal air batteries as well as biological flow battery. A biological battery system includes a reaction vessel, a medium, a conductive anode and a biological cathode electrode. The biological cathode has a conductive support layer, a polymeric binding layer disposed between the conductive support layer and a contact layer. The contact layer being configured to be in electrical contact with biological components in the medium or being deposited with biological components. When the reaction vessel is open to an ambient air, the biological components accept electrons from the cathode.
The within disclosure provides devices, methods and systems for use in authenticating hydrogen fuel tanks or cartridges utilizing unique identifier elements, physical conformations and combinations of same. A user may place a hydrogen cartridge with a hollow body and a shaped body and/or dispensing end in a carriage having a fluid communication means and said fluid communication means matching said shaped body and/or dispensing end, whereby a tank mating to the carriage is limited to matching shaped cartridge and carriage.
A fuel cell stack FS includes: a stack A that includes a single cells C that are stacked, each of the single cells including a frame 2 that holds an outer periphery of a membrane electrode assembly 1 and a pair of separators 3, 4 sandwiching the membrane electrode assembly 1 and the frame 2; and a case 50 that houses the stack A. The frame 2 comprises a protrusion 11 that protrudes outward from an outer periphery of a frame body 2A beyond an outer peripheral edge of the pair of separators 3, 4. A protrusion length of the protrusion 11 is greater than at least a gap between the frame 2 and one of the pair of separators 3, 4, and the protrusion 11 is bendable with respect to the frame body 2A. The protrusions prevent a contact between the separators 3, 4 of the single cell C and a contact between the end faces of the separators 3, 4 and the case 50 so as to prevent a short circuit of the single cell C.
A printed energy storage device includes a first electrode including zinc, a second electrode including manganese dioxide, and a separator between the first electrode and the second electrode, the first electrode, second, electrode, and separator printed onto a substrate. The device may include a first current collector and/or a second current collector printed onto the substrate. The energy storage device may include a printed intermediate layer between the separator and the first electrode. The first electrode, and the second electrode may include 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode and the second electrode may include an electrolyte having zinc tetrafluoroborate (ZnBF4) and 1-ethyl-3-methylimidazolium tetrafluoroborate (C2mimBF4). The first electrode, the second electrode, the first current collector, and/or the second current collector can include carbon nanotubes. The separator may include solid microspheres.
Provided are electrocatalysts, fuel cells, methods of making fuel cells, and methods of generating an electric current, each featuring a platinum (Pt)-containing substrate in contact with an aqueous solution comprising Pb2+. Electrocatalysts of the invention are formed via underpotential deposition (UPD) when a trace amount of Pb2+ is present in the electrolyte of a half anodic cell for oxidizing formic acid using Pt as the anode. Surprisingly, the UPD process dramatically enhances the activity of formic acid oxidation, at least as much as 10-fold compared with palladium (Pd) black. In an embodiment, the electrocatalyst comprises a Pt-containing substrate, a submonolayer of lead (Pb) adsorbed onto the Pt-containing substrate, and an aqueous solution comprising Pb2+, wherein the concentration of Pb2+ in the aqueous solution is 10 to 500 μm.
An object of the invention is to provide an oxygen reduction catalyst composed of a titanium oxynitride having high oxygen reduction capacity. The oxygen reduction catalyst of the invention is a titanium oxynitride that has a nitrogen element content of 8.0 to 15 mass %, has a crystal structure of anatase titanium dioxide in a powder X-ray diffraction measurement, and has a signal intensity ratio N—Ti—N/O—Ti—N in an X-ray photoelectron spectroscopic analysis of in the range of 0.35 to 0.70.
A battery is provided in the present disclosure. The battery includes: a positive electrode plate including a positive current collector and a positive active material layer; a negative electrode plate including a positive current collector and a negative active material layer; and an electrolyte. The positive current collector includes an insulation layer used to support a conductive layer and the conductive layer used to support the positive active material layer and located above at least one surface of the insulation layer. The conductive layer has a thickness of D2 which satisfies: 300 nm≤D2≤2 μm. A protective layer is arranged on at least one surface of the conductive layer. The negative current collector is a copper foil current collector having a thickness of 6 μm to 12 μm.
Methods and apparatus for predicting colorant usage by printing devices are provided. A prediction server can receive a request to predict colorant usage for a first printing device. The prediction server can determine first plurality of functions to predict colorant usage for the first printing device. The first plurality of functions can include at least one linear function and at least one non-linear function. The first plurality of functions can be based on colorant-usage rates indicating historical rates of change in colorant used by the first printing device. The prediction server can determine a prediction of colorant usage for the first printing device using the first plurality of functions. The prediction server can provide an output involving the prediction of colorant usage for the first printing device, where the prediction of colorant usage can include a confidence interval related to the prediction.
A lithium ion secondary battery, improved in durability against high-rate charging/discharging, which includes, in the negative electrode active material layer, a negative electrode active material formed of a graphite carbon material having a graphite structure in at least a part thereof, and a conductive carbon material, which is different from the graphite carbon material and is formed of a conductive amorphous carbon. The negative electrode active material has a bulk density of 0.5 g/cm3 or more and 0.7 g/cm3 or less, and a BET specific surface area of 2 m2/g or more and 6 m2/g or less. The conductive carbon material has a bulk density of 0.4 g/cm3 or less, and a BET specific surface area of 50 m2/g or less.
A negative electrode active material with sufficiently high discharge capacity at a high rate, and a negative electrode and a lithium ion secondary battery using the negative electrode active material. A negative electrode active material according to the invention includes a negative electrode active material particle containing silicon and silicon oxide, wherein a surface layer part of the negative electrode active material particle is a layer with lower density than a core part of the negative electrode active material particle. With such a structure of the negative electrode active material, the sufficiently high discharge capacity at a high rate can be obtained.
Disclosed is an electrode assembly with a structure in which a plurality of electrode plates are stacked while a separator is interposed between a positive electrode plate and a negative electrode plate, each of the electrode plates including an electrode tap that externally protrude from one side thereof to form a tap-lead coupler and at least two or more fixing parts that externally protrude from each of electrode plate by a length of 10% to 50% of a length of the electrode tap from the one side and/or the other side, wherein fixing parts with the same polarity, which are positioned in parallel to each other in up and down directions, are bonded to each other to maintain a stack interval between the electrode plates while the electrode plates are stacked.
Embodiments of the present application disclose a battery to reduce the volume of the battery, improve the energy density of the battery, and further improve the bottom molding effect of the battery, as well as the safety performance and service life of the battery. The battery comprises an electrode assembly and a package film for packaging the electrode assembly, the package film including a folding portion, the folding portion including a first segment attached to the end face of the electrode assembly and a second segment connected to the first segment. The first segment is arranged between the second segment and the electrode assembly, and the second segment includes a multilayer package films.
A dendrite penetration-resistant layer for a rechargeable alkali metal battery, comprising an amorphous carbon or polymeric carbon matrix, an optional carbon or graphite reinforcement phase dispersed in this matrix, and a lithium- or sodium-containing species that are chemically bonded to the matrix and/or the optional carbon or graphite reinforcement phase to form an integral layer that prevents dendrite penetration through this integral layer in the alkali metal battery, wherein the lithium- or sodium-containing species is selected from Li2CO3, Li2O, Li2C2O4, LiOH, LiX, ROCO2Li, HCOLi, ROLi, (ROCO2Li)2, (CH2OCO2Li)2, Li2S, LixSOy, Na2CO3, Na2O, Na2C2O4, NaOH, NaX, ROCO2Na, HCONa, RONa, (ROCO2Na)2, (CH2OCO2Na)2, Na2S, NaxSOy, or a combination thereof, wherein X═F, Cl, I, or Br, R=a hydrocarbon group, x=0−1, y=1−4; and wherein the lithium- or sodium-containing species is derived from an electrochemical decomposition reaction.
A polyolefin microporous membrane has excellent strength, permeability and heat resistance, which is obtained by using UHMwPE and employing a sequential stretching system, and a production method of the microporous membrane. In producing a microporous membrane by using a primary material A having a molecular weight (Mw) of less than 1.0×106, a secondary material B having a molecular weight of 1.0×106 or more, and a plasticizer, when the endothermic quantity of a mixture of the primary material and the plasticizer and the endothermic quantity of a mixture of the secondary material and the plasticizer are denoted as Q1 and Q2, respectively, respective resins are designed such that the ratio of endothermic quantity Q2 to endothermic quantity Q1 (endothermic quantity Q2/endothermic quantity Q1) becomes 1 or more over a temperature range of 110 to 118° C.
An organic light emitting display device includes a substrate. A buffer layer is disposed on the substrate. The buffer layer includes a first opening exposing an upper surface of the substrate in a bending region. Pixel structures are positioned in a pixel region on the buffer layer. A fan-out wiring is positioned in the peripheral region and the pad region on the insulation layer structure such that the upper surface of the substrate and the first portion of the buffer layer are exposed. A passivation layer is disposed on the fan-out wiring, side walls of the insulation layer structure adjacent to the bending region, and the first portion of the buffer layer. The passivation layer includes a third opening exposing the upper surface of the substrate in the bending region. A connection electrode is positioned in the bending region on the substrate.
A method for manufacturing display apparatus comprises: forming a display panel by forming a plurality of display elements on a substrate having flexibility; providing a holding member at a part of or the entire of an outer edge of the display panel along the outer edge, the holding member engaging with an outer periphery of the display panel; preparing a supporting member having a surface on which the substrate of the display panel is to be placed; placing the substrate on the surface of the supporting member; bonding the holding member to the surface of the supporting member; and bringing the substrate into close contact with the surface of the supporting member at a strength lower than a bonding strength between the holding member and the surface of the supporting member.
The present disclosure provides a display device and a manufacturing method thereof, in the field of display technology. The display device can comprise: a display panel and a light ray control component disposed on a light emergent side of the display panel, wherein the light ray control component comprises a plurality of zone plates; each sub-pixel region on the display panel corresponds to one of the zone plates, and the zone plate corresponding to any sub-pixel region is used to control a direction of light rays emitted from the any sub-pixel region. In the present disclosure, the light ray control component comprising a plurality of zone plates is disposed on the light emergent side of the display panel, and each sub-pixel region of the display panel corresponds to one zone plate. Therefore, the problem in the related art that the light rays emergent from the light emergent side of the display panel are divergent light, and a direction of the light rays is hard to control is solved. The effect of controlling the direction of the light rays emergent from the light emergent side of the display panel by the light ray control component is achieved.
The present disclosure provides an OLED panel and a manufacturing method thereof and OLED display. The OLED panel includes a reflecting wall located between two adjacent light-emitting regions and within a pixel defining layer. Therefore, the present disclosure can improve light emission rate, reduce power consumption and prolong service life of device, and eliminate mixing phenomenon caused by mixing different color light emitted from adjacent light-emitting regions.
An organic EL device as an the electro-optical device includes a reflective layer; an opposite electrode as a semitransparent reflective layer; and a first luminescence pixel and a second luminescence pixel as first pixels, and a third luminescence pixel as a second pixel respectively having an optical path length adjustment layer and a functional layer provided between the reflective layer and the opposite electrode; in which the optical path length adjustment layer of the first luminescence pixel includes a fourth insulation layer as a luminance adjustment layer and the optical path length adjustment layer of the third luminescence pixel does not include a third insulation layer.
The embodiments of the disclosure provide a method of encapsulating a flexible OLED panel and an encapsulation structure of a flexible OLED panel. The method of encapsulating a flexible OLED panel includes: forming a liquid metal layer on a first inorganic barrier layer covering the OLED device; using oxygen to oxidize the liquid metal layer, and forming a liquid metal oxide layer on a surface of the liquid metal layer; and sequentially forming an organic buffer layer and a second inorganic barrier layer on the liquid metal oxide layer to obtain an encapsulation structure. The first inorganic barrier layer, the second inorganic barrier layer, the liquid metal layer and the liquid metal oxide layer could prevent penetration of water and oxygen, and the liquid metal layer and the organic buffer layer could release the interlayer stress of the encapsulation structure in order to keep the flexibility of the encapsulation structure.
A quantum dot light emitting device is disclosed. The quantum dot light emitting device includes a first electrode and a second electrode. The quantum dot light emitting device includes a quantum dot light emitting layer interposed between the first electrode and the second electrode. The quantum dot light emitting device includes a first hole transport layer located between the quantum dot light emitting layer and the first electrode. The quantum dot light emitting device includes a hole injection layer located between the first hole transport layer and the first electrode. The quantum dot light emitting device includes an electron transport layer located between the quantum dot light emitting layer and the second electrode. The quantum dot light emitting device includes a filling layer located between the electron transport layer and the quantum dot light emitting layer and embedded in the quantum dot light emitting layer.
The present invention relates to a compound having a general formula selected from the group consisting of formula 1a and 1b, wherein K represents an aromatic or heteroaromatic group in which at least one hydrogen atom may be substituted by a functional groups selected from the group consisting of a sulfonic acid group, a sulfuric acid group, an ammonium group and an aliphatic group; X is selected from the group consisting of a C—C-bond, O, S, SO2 and NR′, wherein R′ represents a hydrogen or an aliphatic or aromatic group; A represents a fluorinated or perfluorinated aromatic group; n represents an integer in the range from 2 to 6; m represents an integer in the range from 1 to 3. The present invention also relates to a composition comprising this compound, to a process for the preparation of a conductive layer using this composition, to a conductive layer comprising the compound according to the present invention, to electronic components comprising this conductive layer and to the use of the compound according to the present invention as an additive in a hole-injection layer of an OLED or in an organic solar cell.
To provide an organic electroluminescence device having a high luminous efficiency and a novel compound that can be used as a material for an organic electroluminescence device having a high luminous efficiency.A compound represented by the following formula (1) or (2): wherein in the formulas (1) and (2), one or more pairs of adjacent two or more of R1 to R7 and R10 to R16 may form a substituted or unsubstituted, saturated or unsaturated ring; R17, and R1 to R7 and R10 to R16 that do not form the substituted or unsubstituted, saturated or unsaturated ring are independently a hydrogen atom, a substituted or unsubstituted aryl group including 6 to 20 ring carbon atoms or a substituted or unsubstituted monovalent heterocyclic group including 5 to 20 ring atoms; two R17s may be the same or different; and Ar1 to Ar4 are independently a substituted or unsubstituted aryl group including 6 to 20 ring carbon atoms.
The present application discloses a method for fabricating a flexible display device, a flexible display device and a display apparatus, the method including: disposing a separation layer on a surface of a substrate; disposing a flexible substrate on a surface of the separation layer away from the substrate; disposing a display assembly on a surface of the flexible substrate away from the separation layer; separating the flexible substrate from the separation layer to obtain the flexible display device; wherein an adhesion between the flexible substrate and the surface of the substrate is greater than an adhesion between the separation layer and the surface of the flexible substrate, an adhesion between the separation layer and the surface of the substrate is greater than the adhesion between the separation layer and the surface of the flexible substrate. By the above method, the application can increase the yield of the flexible display device.
Methods and devices are provided for fabricating a resistive random-access array having dedicated electroforming contacts. A lower conductive line is formed on an interlayer dielectric layer. A lower electrode is formed on the lower conductive line. An isolation layer is formed having an upper surface which is coplanar with an upper surface of the lower electrode. A stack structure including a metal-oxide layer and upper electrode is formed on the lower electrode. Insulating spacers are formed on sidewalls of the stack structure. The lower electrode, and stack structure form a resistive memory cell, wherein a footprint of the lower electrode is greater than that of the upper electrode. An upper conductive line contacts the upper electrode, and is arranged orthogonal to the lower conductive line. A dedicated electroforming contact contacts an extended portion of the lower electrode which extends past a cross-point of the upper and lower conductive lines.
An electrochemically actuatable electronic component comprises: a substrate; at least one first and one second actuating electrodes; at least one first and one second measuring electrodes; at least one storing electrode configured to free ions under the action of the actuating electrodes; at least one ionic conductor able to conduct the ions and that is located in a region placed between the measuring electrodes; a device suitable for: applying a voltage or a current between the first and second actuating electrodes to allow the migration of ions from the storing electrode to the first actuating electrode forming thereon an electrochemical deposition through the ionic conductor and for measuring, between the first and second measuring electrodes, a modification of at least one characteristic of the region placed between the first and second measuring electrodes, to determine at least one characteristic of the electronic component.
In order to provide an Fe2TiSi type full-Heusler thermoelectric conversion material having a high dimensionless figure-of-merit ZT, the full-Heusler thermoelectric conversion material is characterized in that: the full-Heusler thermoelectric conversion material has secondary crystal grains having an Fe2TiSi type composition and a coating layer covering the circumference of the secondary crystal grains and containing an element other than Fe, Ti, and Si as a main component; and the coating layer has a composition containing an element being dissolvable in a crystal structure of the Fe2TiSi type composition and having an electric resistivity lower than the secondary crystal grains.
Thermoelectric materials based on tetrahedrite structures for thermoelectric devices and methods for producing thermoelectric materials and devices are disclosed.
An LED lamp is formed from a die substrate wherein the substrate has formed thereon a semiconductor material, an electrode for the application of a bias across the semiconductor material for causing light to be emitted therefrom, and an adhesive that bonds the die substrate to a support substrate, wherein the adhesive is a polymerized siloxane polymer having a thermal conductivity of greater than 0.1 watts per meter kelvin (W/(m·K)) wherein the adhesive is not light absorbing, wherein the siloxane polymer has silicon and oxygen in the polymer backbone, as well as aryl or alky groups bound thereto, and wherein the adhesive further comprises particles having an average particle size of less than 100 microns.
A light-emitting diode (LED) package structure includes: a support; an LED chip; and a package cover, wherein: a support circuit is formed over the support; the LED chip is arranged over the support and electrically coupled to the support circuit; a lower surface periphery of the package cover is provided with a groove structure filled with organic binder; and the package cover is arranged over the LED chip and connected to the support via the organic binder.
Simplified LED chip architectures or chip builds are disclosed that can result in simpler manufacturing processes using fewer steps. The LED structure can have fewer layers than conventional LED chips with the layers arranged in different ways for efficient fabrication and operation. The LED chips can comprise an active LED structure. A dielectric reflective layer is included adjacent to one of the oppositely doped layers. A metal reflective layer is on the dielectric reflective layer, wherein the dielectric and metal reflective layers extend beyond the edge of said active region. By extending the dielectric layer, the LED chips can emit with more efficiency by reflecting more LED light to emit in the desired direction. By extending the metal reflective layer beyond the edge of the active region, the metal reflective layer can serve as a current spreading layer and barrier, in addition to reflecting LED light to emit in the desired direction. The LED chips can also comprise self-aligned and self-limiting features that simplify etching processes during fabrication.
A solar cell module includes: a first cover in the form of a plate having at least a portion transparently; a second cover disposed to face the first cover; at least one solar cell disposed between the first cover and the second cover; a sealing material which fills a space between the first cover and the second cover and joins them together to thus seal the solar cell; and terminals electrically connected to the solar cell, surrounded by the sealing material between the first cover and the second cover, and serving as a conductor. At least one of the first cover and the second cover has a boss as a positioning portion which positions the terminals. The terminal contacts the first cover having the boss.
The semiconductor device according to the present invention includes: an n-type semiconductor substrate; a p-type anode layer provided in a front surface of the n-type semiconductor substrate; an anode electrode provided on the p-type anode layer; and a wire connected to the anode electrode, the p-type anode layer includes: a p+-type anode layer disposed to include a position right under a portion where the wire is connected; and a p−-type anode layer disposed to exclude the position right under the portion where the wire is connected, and an impurity concentration of the p+-type anode layer is higher than an impurity concentration of the p−-type anode layer.
A semiconductor device including a transistor having low leakage current between the drain and the gate is provided. The semiconductor device includes an insulating film provided so as to cover a corner of the first conductor and a second conductor provided so as to overlap with a corner of the first conductor with the insulating film provided therebetween. Variation in the thickness of the insulating film can be prevented by making the first conductor have a rounded corner. Furthermore, concentration of electric field due to the corner of the first conductor can be relaxed. Thus, the current leakage between the first conductor and the second conductor can be reduced.
Embodiments disclosed herein relate to using an implantation process and a melting anneal process performed on a nanosecond scale to achieve a high surface concentration (surface pile up) dopant profile and a retrograde dopant profile simultaneously. In an embodiment, a method includes forming a source/drain structure in an active area on a substrate, the source/drain structure including a first region comprising germanium, implanting a first dopant into the first region of the source/drain structure to form an amorphous region in at least the first region of the source/drain structure, implanting a second dopant into the amorphous region containing the first dopant, and heating the source/drain structure to liquidize and convert at least the amorphous region into a crystalline region, the crystalline region containing the first dopant and the second dopant.
A fin-type field-effect transistor (FinFET) device includes a plurality of fins formed over a substrate. The semiconductor device further includes a dielectric layer filled in a space between each fin and over a first portion of the plurality of fins and a dielectric trench formed in the dielectric layer. The dielectric trench has a vertical profile. The semiconductor device further includes a second portion of the plurality of fins recessed and exposed in the dielectric trench. The second portion of the plurality of fins have a rounded-convex-shape top profile.
Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a semiconductor substrate and forming a gate stack over the fin structure. The method also includes forming an epitaxial structure over the fin structure. The method further includes forming a dielectric layer over the epitaxial structure and forming an opening in the dielectric layer to expose the epitaxial structure. In addition, the method includes forming a modified region in the epitaxial structure. The modified region has lower crystallinity than an inner portion of the epitaxial structure and extends along an entirety of an exposed surface of the epitaxial structure. The method also includes forming a semiconductor-metal compound region on the epitaxial structure. All or some of the modified region is transformed into the semiconductor-metal compound region.
Devices and methods of fabricating vertical nanowires on semiconductor devices are provided. One method includes: obtaining an intermediate semiconductor device having a substrate, a first insulator disposed above the substrate, a material layer over the first insulator, a second insulator above the material layer, and a first hardmask; etching a plurality of vertical trenches through the hardmask, the first and second insulators, and the material layer; growing, epitaxially, a set of silicon nanowires from a bottom surface of the plurality of vertical trenches; etching a first set of vertical trenches to expose the material layer; etching a second set of vertical trenches to the substrate; depositing an insulating spacer material on a set of sidewalls of the first and second set of vertical trenches; and forming contacts in the first and second set of vertical trenches.
A junction gate field-effect transistor (JFET) includes a substrate, a source region formed in the substrate, a drain region formed in the substrate, a channel region formed in the substrate, and at least one gate region formed in the substrate. The channel region connects the source and drain regions. The at least one gate region contacts one of the source and drain regions at an interface, and the at least one gate region is isolated from the other of the source and drain regions. A dielectric layer covers the interface while exposing portions of the gate region and the one of the source and drain regions.
Semiconductor devices include a first dielectric layer formed over a source and drain region. A second dielectric layer is formed over the first dielectric layer, the second dielectric layer having a flat, non-recessed top surface. A gate stack passes vertically through the first and second dielectric layers to contact the source and drain regions and an underlying substrate.
A semiconductor structure having electrostatic control and a low threshold voltage is provided. The structure includes an nFET containing vertically stacked and suspended Si channel material nanosheets stacked vertically above a pFET containing vertically stacked and suspended SiGe channel material nanosheets. The vertically stacked nFET and pFET include a single work function metal.
The present disclosure relates to a semiconductor device and a manufacturing method, and more particularly to a MIM dual capacitor structure with an increased capacitance per unit area in a semiconductor structure. Without using additional mask layers, a second parallel plate capacitor can be formed over a first parallel plate capacitor, and both capacitors share a common capacitor plate. The two parallel plate capacitors can be connected in parallel to increase the capacitance per unit area.
A capacitor includes a first electrode and a second electrode spaced apart from each other, a dielectric layer disposed between the first electrode and the second electrode, and a seed layer disposed between the first electrode and the dielectric layer. The dielectric layer includes a dielectric material having a tetragonal crystal structure. The seed layer includes a seed material that satisfies at least one of a lattice constant condition or a bond length condition.
A pixel and a display device having the pixel, the pixel including: a light emitting element; a first transistor configured to control, in response to a voltage of a first node coupled to a gate electrode thereof, current to be supplied from a first power supply coupled with a first electrode thereof to a second power supply via the light emitting element; a storage capacitor coupled between the first node and the first power supply; a second transistor coupled between a data line and the first transistor; an initialization transistor coupled between the light emitting element and an initialization power supply to transmit a voltage of the initialization power supply the light emitting element; and a dummy transistor coupled between the light emitting element and the initialization power supply, and including a first electrode and a second electrode that are coupled with each other.
Disclosed are an organic light emitting display device and a method of manufacturing the same. In the organic light emitting display, an anode connected to a thin film transistor and a bank disposed along the edge of the anode are simultaneously formed through one mask process, and a partition is formed to cover the side surface of the anode, thereby preventing damage to a pad cover electrode by an etching solution or etching gas of the anode without any separate pad protective film.
An organic light-emitting display apparatus including a substrate, a first first electrode on the substrate, a first organic functional layer on the first first electrode, the first organic functional layer including a first emission layer, a first second electrode on the first organic functional layer, a second first electrode on the substrate, the second first electrode being spaced apart from the first first electrode, a second organic functional layer on the second first electrode, the second organic functional layer including a second emission layer, a second second electrode on the second organic functional layer, and a self-assembled layer between the first organic functional layer and the second organic functional layer, the self-assembled layer containing fluorine.
An organic light-emitting diode, a manufacturing method thereof and a display device are provided. The organic light-emitting diode includes: a base substrate, a first electrode and a second electrode disposed on the base substrate, a first light-emitting layer disposed between the first electrode and the second electrode, and a charge generation layer disposed between the first light-emitting layer and the second electrode, and the charge generation layer includes a first connection layer, a carrier injection layer and a second connection layer which are stacked in sequence; the first connection layer includes an electron transport material doped with a hole blocking material, and the second connection layer includes a hole transport material doped with an electron blocking material.
A method of forming a transistor, according to one embodiment, includes: forming an doped material, depositing an oxide layer on the doped material, depositing a conducting layer on the oxide layer, patterning the conducting layer to form at least two word lines, depositing a nitride layer above the at least two word lines, defining at least two hole regions, at each of the defined hole regions, etching down to the doped material through each of the respective word lines, thereby creating at least two holes, depositing a gate dielectric layer on the nitride layer and in the at least two holes, depositing a protective layer on the gate dielectric layer, etching in each of the at least two holes down to the doped material, and removing a remainder of the protective layer.
A method of manufacturing a photoelectric conversion apparatus includes heating a semiconductor substrate while a pixel circuit area is covered with an insulator film, performing ion implantation into the pixel circuit area through the insulator film, performing ion implantation into a peripheral circuit area after the heating, and forming a side wall on a side surface of a gate electrode of a transistor after the performing ion implantation into the peripheral circuit area.
A semiconductor device includes a first semiconductor layer of a first conductivity type having a first surface on one side thereof and a second surface on an opposite side thereof, and having an element therein, a second semiconductor layer of a second conductivity type having a circuit element formed therein, the second semiconductor layer being formed at the one side of the first surface of the first semiconductor layer, an insulating layer disposed on the first surface of the first semiconductor layer, and a charge-attracting layer configured to attract electrical charges generated in the insulating layer when a predetermined voltage is supplied to the charge-attracting layer.
A semiconductor device includes a lower insulating layer on a lower substrate, a lower pad structure inside the lower insulating layer, an upper insulating layer on the lower insulating layer, an upper pad structure inside the upper insulating layer, and an upper substrate on the upper insulating layer. A via plug passes through at least a portion of each of the upper substrate, the upper insulating layer, and the lower insulating layer, and in contact with the upper pad structure and the lower pad structure. The upper pad structure includes upper pad conductive layers and an upper connection layer between the upper pad conductive layers. The upper connection layer includes a conductive pattern having a shape different from a shape of at least one of the upper pad conductive layers. The via plug is in direct contact with the upper pad conductive layers and the upper connection layer.
In some embodiments, a method is provided. The method includes forming a plurality of trenches in a semiconductor substrate, where the trenches extend into the semiconductor substrate from a back-side of the semiconductor substrate. An epitaxial layer comprising a dopant is formed on lower surfaces of the trenches, sidewalls of the trenches, and the back-side of the semiconductor substrate, where the dopant has a first doping type. The dopant is driven into the semiconductor substrate to form a first doped region having the first doping type along the epitaxial layer, where the first doped region separates a second doped region having a second doping type opposite the first doping type from the sidewalls of the trenches and from the back-side of the semiconductor substrate. A dielectric layer is formed over the back-side of the semiconductor substrate, where the dielectric layer fill the trenches to form back-side deep trench isolation structures.
A technique comprising: providing an assembly temporarily adhered on opposite sides to respective carriers by respective adhesive elements, the assembly including at least one plastic support sheet; heating the assembly while mechanically compressing the assembly between the carriers, wherein the strength of adhesion of one of said adhesive elements to the respective carrier and/or to the assembly is partially reduced during said heating of the assembly under mechanical compression; and wherein the strength of adhesion of the said adhesive element to the carrier and/or to the assembly is further reducible by further heating the said adhesive element after partially or completely relaxing the pressure at which the assembly is mechanically compressed between the two carriers.
A display device includes a substrate, a buffer layer on the substrate, a first semiconductor layer of a first transistor on the buffer layer, a first insulating layer disposed on the first semiconductor layer, a first gate electrode of the first transistor on the first insulating layer, a second insulating layer on the first gate electrode, and a second semiconductor layer of a second transistor disposed on the second insulating layer. A difference between a first distance between a lower side of the buffer layer and an upper side of the second insulating layer and a second distance between an upper side of the first semiconductor layer and an upper side of the second insulating layer is 420 to 520 angstroms.
A thin-film transistor substrate may include a first thin-film transistor and a second thin-film transistor which are disposed on a substrate. The first thin-film transistor may include a first semiconductor layer, a first gate electrode, and a first electrode. The second thin-film transistor may include a second semiconductor layer disposed on the first semiconductor layer and overlapping at least a portion of the first semiconductor layer, a second gate electrode, and a second electrode electrically connected to the first electrode. The second electrode may overlap the first electrode.
Memory dies on a wafer may include multiple memory blocks including bit lines extending along different directions. A memory die may include a first-type plane including first memory blocks and a second-type plane including second memory blocks. In this case, memory blocks having different bit line directions may be formed within a same memory die. An exposure field may include multiple types of memory dies that are oriented in different orientations. The bit line directions may be oriented differently in the multiple types of memory dies. Each lithographic exposure process may include a first step in which lithographic patterns in first exposure fields are oriented in one direction, and a second step in which lithographic patterns in second exposure fields are oriented in another direction. The different orientations of bit lines and word lines may change local directions of stress to reduce wafer distortion.
In an example, a method of forming a stacked memory array includes forming a stack of alternating first and second dielectrics, forming a termination structure through the stack, the termination structure comprising a dielectric liner around a conductor, forming a set of contacts concurrently with forming the termination structure, forming a third dielectric over an upper surface of the stack and an upper surface of the termination structure, forming a first opening through the third dielectric and the stack between first and second groups of semiconductor structures so that the first opening exposes an upper surface of the conductor, and removing the conductor from the termination structure to form a second opening lined with the dielectric liner. In some examples, the dielectric liner can include a rectangular or a triangular tab or a pair of prongs that can have a rectangular profile or that can be tapered.
A first memory film and a sacrificial fill structure are formed within each first-tier memory opening through a first alternating stack of first insulating layers and first spacer material layers. A second alternating stack of second insulating layers and second spacer material layers is formed over the first alternating stack, and a second-tier memory opening is formed over each sacrificial fill structure. A second memory film is formed in each upper opening, and the sacrificial fill structures are removed from underneath the second-tier memory openings to form memory openings. A semiconductor channel is formed on each vertically neighboring pair of a first memory film and a second memory film as a continuous layer. The first memory film is protected by the sacrificial fill structure during formation of the second-tier memory openings.
A three-dimensional semiconductor memory device includes a peripheral circuit structure on a substrate, a horizontal active layer on the peripheral circuit structure, stacks provided on the horizontal active layer to include a plurality of electrodes, a vertical structure vertically penetrating the stacks, a common source region between ones of the stacks and in the horizontal active layer, and pick-up regions in the horizontal active layer. The horizontal active layer includes first, second, and third active semiconductor layers sequentially stacked on the peripheral circuit structure. The first and third active semiconductor layers are doped to have high and low impurity concentrations, respectively, and the second active semiconductor layer includes an impurity diffusion restraining material.
A method for fabricating semiconductor device includes the steps of: providing a substrate having a memory region and a periphery region; forming a first trench and a second trench in substrate on the memory region, wherein a width of the second trench is greater than a width of the first trench; forming a first liner in the first trench and the second trench; forming a second liner on the first liner, wherein the second liner completely fills the first trench and partly fills the second trench; and planarizing the second liner and the first liner to form a first isolation structure and a second isolation structure.
A semiconductor device and method of manufacturing the same is provided in the present invention. The method includes the step of forming first mask patterns on a substrate, wherein the first mask patterns extend in a second direction and are spaced apart in a first direction to expose a portion of first insulating layer, removing the exposed first insulating layer to form multiple recesses in the first insulating layer, performing a surface treatment to the recess surface, filling up the recesses with a second insulating layer and exposing a portion of the first insulating layer, removing the exposed first insulating layer to form a mesh-type isolation structure, and forming storage node contact plugs in the openings of mesh-type isolation structure.
On a front surface side of an n− semiconductor substrate, an emitter electrode and trench gates each including a p base layer, a trench, a gate oxide film and a gate electrode are provided in an IGBT region and a FWD region. Among p base layers each between adjacent trenches, p base layers having an n+ emitter region are the IGBT emitter region and the p base layers not having the n+ emitter region are the FWD anode region. A lateral width of an n+ cathode region is narrower than a lateral width of the FWD anode region. A difference of a lateral width of the FWD anode region and a lateral width of the n+ cathode region is 50 μm or more. Thus, a semiconductor device may be provided that reduces the forward voltage drop while suppressing waveform oscillation during reverse recovery and having soft recover characteristics.
A 3D semiconductor wafer, the wafer including: a first device, where the first device includes a first level, the first level including first transistors, and where the first device includes a second level, the second level including first interconnections; a second device overlaying the first device, where the second device includes a third level, the third level including second transistors, and where the second device includes a fourth level, the fourth level including second interconnections, where the first device is substantially larger in area than the second device; and a plurality of connection paths, where the plurality of connection paths provides connections from a plurality of the first transistors to a plurality of the second transistors.
An electronic device can include a transistor having a gate electrode, a first portion, and a second portion, wherein along the gate electrode, the first portion of the transistor has a first gate-to-drain capacitance and a first gate-to-source capacitance, the second portion of the transistor has a second gate-to-drain capacitance and a second gate-to-source capacitance, and a ratio of the first gate-to-drain capacitance to the first gate-to-source capacitance is less than a ratio of the second gate-to-drain capacitance to the second gate-to-source capacitance.
Embodiments of the present invention disclose a computer system having a plurality of quantum circuits arranged in a two-dimensional plane-like structure, the quantum circuits comprising qubits and busses (i.e., qubit-qubit interconnects), and a method of formation therefor. A quantum computer system comprises a plurality of quantum circuits arranged in a two-dimensional pattern. At least one interior quantum circuit, not along the perimeter of the two-dimensional plane of the plurality of quantum circuits, contains a bottom chip, a device layer, a top chip, and a routing layer. A signal wire connects the device layer to the routing layer, wherein the signal wire breaks the two dimensional plane, for example, the signal wire extends into a different plane.
Packages and packaging methods for semiconductor devices, and packaged semiconductor devices are disclosed. In some embodiments, a package for a semiconductor device includes a molding compound and a plurality of through-vias disposed in the molding compound. The package includes an interconnect structure disposed over the plurality of through-vias and the molding compound. The interconnect structure includes a metallization layer. The metallization layer includes a plurality of contact pads and a fuse.
An integrated circuit package and a system including the integrated circuit package as well as a process for assembling the integrated circuit package are provided. The integrated circuit package includes a first die manufactured on a first wafer utilizing a first node size, a second die manufactured on a second wafer utilizing a second node size, and a substrate coupled to the second die at a plurality of bump sites on a bottom surface of the second die. The first die may be mounted on a top surface of the second die utilizing a hybrid wafer bonding technique, micro bumps, or electrode-less plating.
Package structures and methods for forming the same are provided. The method includes providing a first integrated circuit die and forming a redistribution structure over the first integrated circuit die. The method also includes forming a base layer over the redistribution structure. The base layer has first and second openings. The first openings are wider than the second openings. The method further includes forming first bumps over the redistribution structure. The first bumps have a lower portion filling the first openings. In addition, the method includes bonding a second integrated circuit die to the redistribution structure through second bumps having a lower portion filling the second openings. There is a space between the second integrated circuit die and the base layer. The method also includes forming a molding compound layer over the base layer. The molding compound layer fills the space and surrounds the first and second bumps.
A power management module comprises one or more power converter chips that are mounted on a power management package substrate. First and second electrical contacts are disposed on opposing first and second sides of the power management package substrate. The power management module can be mounted on a processor module to supply power to one or more processor chips in the processor module. In one example, the processor chip(s) are mounted on a first side of a processor package substrate and the power management module is mounted on an opposing second side of the processor package substrate. The power management module and the processor module can be centered and aligned with respect to each other or they can be offset laterally from each other. In another embodiment, the processor chip(s) are embedded in the processor package substrate.
A method for fabricating a semiconductor die involves providing a semiconductor substrate, forming a plurality of active devices and a plurality of passive devices over the semiconductor substrate, forming one or more electrical connections to the plurality of active devices and the plurality of passive devices, forming one or more dielectric layers over at least a portion of the electrical connections, applying an interface material over at least a portion of the one or more dielectric layers, removing portions of the interface material to form a plurality of trenches, and covering at least a portion of the interface material and the plurality of trenches with a substrate layer to form a plurality of radio-frequency isolation cavities.
Embodiments include semiconductor device packages and methods of forming such packages. In an embodiment, the package may include a die-side reinforcement layer with a cavity formed through the die-side reinforcement layer. A die having a first side and an opposite second side comprising a device side may be positioned in the cavity with the first side of the die being substantially coplanar with a first side of the die-side reinforcement layer. In an embodiment, a build-up structure may be coupled to a second side of the die. Embodiments include a build-up structure that includes a plurality of alternating layers of patterned conductive material and insulating material.
Apparatuses relating generally to a microelectronic package having protection from electromagnetic interference are disclosed. In an apparatus thereof, a platform has an upper surface and a lower surface opposite the upper surface and has a ground plane. A microelectronic device is coupled to the upper surface of the platform. Wire bond wires are coupled to the ground plane with a pitch. The wire bond wires extend away from the upper surface of the platform with upper ends of the wire bond wires extending above an upper surface of the microelectronic device. The wire bond wires are spaced apart from one another to provide a fence-like perimeter to provide an interference shielding cage. A conductive layer is coupled to at least a subset of the upper ends of the wire bond wires for electrical conductivity to provide a conductive shielding layer to cover the interference shielding cage.
A nonvolatile memory device includes a metal silicon nitride layer on a three-dimensional (3D) crosspoint architecture, where the metal silicon nitride layer is in the memory array processing. The metal silicon nitride layer is patterned in accordance with the memory array structure, rather than being an underlying layer for a metal layer. The metal layer provides bitline or wordline select paths, and can connect to a via in parallel with the memory array stack. The metal silicon nitride layer is between the metal layer and the memory array, and is not present over the via.
According to one embodiment, a semiconductor memory device includes a first interconnect layer, a first insulating layer, a second interconnect layer, and a memory pillar including a second insulating layer, a charge storage layer, and a third insulating layer stacked on a part of a side surface and on the bottom surface of the memory pillar, and a first silicide layer in contact with the first interconnect layer, a semiconductor layer, and a second silicide layer stacked in order along a first direction. A height position of a bottom surface of the first silicide layer is lower than a top surface of the first interconnect layer, and a height position of a top surface of the first silicide layer is higher than a bottom surface of the second interconnect layer.
A method including forming a plurality of first interconnects and a plurality of second interconnects on opposite sides of an integrated circuit device layer including a plurality of circuit devices, wherein the plurality of second interconnects include interconnects of different dimensions; and forming contact points to the second plurality of interconnects, the contact points operable for connection to an external source. An apparatus including a substrate including a plurality of first interconnects and a plurality of second interconnects on opposite sides of an integrated circuit device layer including a plurality of circuit devices, wherein the plurality of second interconnects include interconnects of different dimensions; and contact points coupled to the second plurality of interconnects, the contact points operable for connection to an external source.
An electrical device includes a substrate and a via. The substrate has a first surface and defines a recess in the first surface. The via is disposed in the recess. The via includes an insulation layer, a first conductive layer and a second conductive layer. The insulation layer is disposed on the first surface of the substrate and extends at least to a sidewall of the recess. The first conductive layer is disposed adjacent to the insulation layer and extends over at least a portion of the first surface. The second conductive layer is disposed adjacent to the first conductive layer and extends over at least a portion of the first surface. The second conductive layer has a negative coefficient of thermal expansion (CTE).
A device includes an integrated circuit (IC) die, a top-side base plate to which the IC die is mounted, and a body attached to the top-side base plate such that the IC die is inside the body, the body configured for attachment to a printed circuit board (PCB) such that the top-side base plate faces away from the PCB. The device may or may not include legs that abut the PCB upon installation.
The specification discloses a technique for preventing a bonding material from reaching the upper and lower surfaces of a semiconductor chip in bonding the semiconductor chip using the bonding material. A die pad of the technique disclosed in the specification includes the following: a die pad substrate; a first projection disposed on the upper surface of the die pad substrate, the first projection having a pedestal shape; a second projection disposed on the upper surface of the die pad substrate so as to surround at least part of the first projection in a plan view, the second projection having a bank shape; and a third projection disposed on the upper surface of the die pad substrate so as to surround at least part of the second projection in a plan view, the third projection having a bank shape.
A method for fabricating a semiconductor device includes forming a fin type pattern protruding from a substrate and extending in a first direction, forming a field insulating layer covering a limited portion of the fin type pattern on the substrate such that the field insulating layer exposes a separate limited portion of the fin type pattern, forming a gate structure on the field insulating layer and the fin type pattern, the gate structure extending in a second direction, the second direction different from the first direction, forming a first barrier layer containing a nitrogen element in a first region of the field insulating layer, wherein the first region is exposed by the gate structure, adjacent to the gate structure and extending in the second direction and forming a gate spacer on the first barrier layer and on a side wall of the gate structure.
Metal interconnect structures are reworked to address possible voids or other defects. Etching of initially deposited interconnect metal to open voids is followed by reflow to accumulate interconnect metal at the bottoms of trenches. Additional interconnect metal is deposited over the initially deposited interconnect metal by electroplating and/or electroless plating. Additional diffusion barrier material may be deposited and patterned prior to deposition of the additional interconnect material.
An interconnect layout structure, having a plurality of air gaps, includes a substrate having an insulating material disposed thereon and a conductive line disposed in the insulating material and extending along a first direction. The air gaps are formed in the insulating material and are arranged end-to-end along the first direction and immediately adjacent to a same side of the conductive line. A patterned hard mask is disposed on the conductive line and has a sidewall extending along a second direction that is perpendicular to the first direction and passing between the adjacent air gaps from the top view. A via structure is formed on the conductive line and is electrically connected to the conductive line.
A device transferring method for transferring a plurality of devices to a mounting substrate provided with a plurality of electrodes includes: a step of adhering an expandable tape to the plurality of devices formed on a front surface side of a substrate through a buffer layer; a step of applying a laser beam to the buffer layer from a back surface side of the substrate, to break the buffer layer; a step of moving the tape in a direction for spacing away from the substrate to separate the substrate and the plurality of devices from each other, thereby transferring the plurality of devices to the tape; a step of expanding the tape in such a manner that the layout of the plurality of devices corresponds to the layout of the plurality of electrodes; and a step of bonding the plurality of devices to the plurality of electrodes at once.
A transfer system includes a transfer chamber having transfer positions, a first robot provided in the transfer chamber to transfer articles between the transfer positions, a second robot provided in the transfer chamber to transfer articles between the transfer positions, and a retreat unit configured to move one robot among the first robot and the second robot to a retreat position by changing a height of the one robot such that the one robot does not interfere with an operating range of another robot among the first robot and the second robot.
A storage facility includes N accommodating sections, where N is a positive integer, M main pipes through which an inert gas flows, where M is a positive integer of 2≤M
A method for forming a carrier substrate for a semiconductor device, the method includes providing a substrate layer including conductive particles embedded in an electrically insulating material and localized heating of the substrate layer along a desired trace by a laser to form a conductive trace of merged particles along the desired trace.
A thin film component sheet includes: a conducting interconnection layer formed of a conductor; an insulating layer that is laminated on the conducting interconnection layer and is formed of an insulating material; and a plurality of thin film electronic components, each of which has a pair of first and second electrode layers and a dielectric layer provided between the first and second electrode layers, and which are arranged to be separated on the insulating layer. In a state in which a main surface of the first electrode layer in each of the plurality of thin film electronic components is exposed to an outside on a main surface of one side of the thin film component sheet, a flat surface of the main surface of the thin film component sheet is formed.
A chemical-mechanical polishing slurry composition, comprising a polishing agent, an amine-based polishing activator, and a roughness adjusting agent, wherein the amine-based polishing activator is a tertiary or quaternary amine, and the roughness adjusting agent is a disaccharide. According to the slurry composition, the roughness of tungsten and silicon oxide films can be modified and the number of particles present on the wafer surface after polishing can be reduces so that defects of the wafer can be prevented.
A method includes performing a first polymerization process on a monomer solution to form a partially processed resin solution, the partially processed resin solution comprising a solvent and a silicon-based resin, spin coating the partially processed resin solution on a substrate, and performing a second polymerization process on the partially processed resin solution to shrink the partially processed resin solution to form a conformal silicon-based resin layer.
Provided is a method of manufacturing a semiconductor device with which a trench shape having vertical, flat, and smooth side wall surfaces can be formed even at room temperature. A semiconductor substrate is placed on a sample stage which is kept at room temperature in a reaction container. A trench is formed in the semiconductor substrate by plasma etching that uses etching gas including oxygen and sulfur hexafluoride, while controlling the gas ratio of oxygen to sulfur hexafluoride so that the gas ratio is from 70% to 100%.
In example implementations of a heterogeneous substrate, the heterogeneous substrate includes a first material having an air trench, a second material coupled to the first material, a dielectric mask on a first portion of the second material and an active region that is grown on a remaining portion of the second material. An air gap may be formed in the air trench by the second material coupled to the first material. Defects in the second material may be contained to an area below the dielectric mask and the active region may remain defect free.
An ionizer includes a probe having multiple coaxially aligned conduits. The conduits may carry liquids, and nebulizing and heating gases at various flow rates and temperatures, for generation of ions from a liquid source. An outermost conduit defines an entrainment region that transports and entrains ions in a gas for a defined distance along the length of the conduits. In embodiments, various voltages may be applied to the multiple conduits to aid in ionization and to guide ions. Depending on the voltages applied to the multiple conduits and electrodes, the ionizer can act as an electrospray, APCI, or APPI source. Further, the ionizer may include a source of photons or a source of corona ionization. Formed ions may be provided to a downstream mass analyser.
A method of mass or mobility spectrometry comprising obtaining one or more sample spectra for a sample. The one or more sample spectra are subjected to pre-processing and then multivariate and/or library based analysis so as to classify the sample. Before the sample spectra are acquired, a library of background spectra, each background spectrum relating to a certain class of sample material, is constructed. The background spectra in this library are used to subtract the background from a sample spectrum during the pre-processing of this sample spectrum.
There is a need to produce electric power by means that provide low pollution and high efficiency. Thermionic energy conversion (TEC) systems enable the direct conversion of energy from thermal to electric, based on the emission of electrons from a heated cathode, Diamond is an ideal material for the cathode because of its high temperature mechanical stability, its ability to be created with low resistivity, and its strong tendency to emit electrons. The efficiency of current TEC systems is not practical, as above approximately 700° C. the current produced decreases. The presence of hydrogen at the electron-emitting surface is required to enhance thermionic emission. The present invention provides a resupply of hydrogen to the emitting surface by diffusion of hydrogen through the diamond cathode, and enables efficient operation of TEC systems at temperatures well above the current limit; practical systems for direct conversion of heat to electricity are thus enabled.
In-situ low pressure chamber cleans and gas nozzle apparatus for plasma processing systems employing in-situ deposited chamber coatings. Certain chamber clean embodiments for conductor etch applications include an NF3-based plasma clean performed at pressures below 30 mT to remove in-situ deposited SiOx coatings from interior surfaces of a gas nozzle hole. Embodiments include a gas nozzle with bottom holes dimensioned sufficiently small to reduce or prevent the in-situ deposited chamber coatings from building up a SiOx deposits on interior surfaces of a nozzle hole.
An exposure apparatus scans a substrate in a Y-axis direction and also adjusts irradiation position of a plurality of beams, based on correction information obtained from the same number of distortion tables as the beams, the distortion tables including information concerning change of irradiation position of the plurality of beams of a multibeam optical system. Especially, the irradiation position of the plurality of beams in the Y-axis direction is adjusted by individually controlling irradiation timing of the plurality of beams irradiated on the substrate from the multibeam optical system.
A method for controlling a particle beam device for imaging, analyzing and/or processing an object, and a particle beam device for carrying out the method. The particle beam device may be an electron beam device and/or or an ion beam device. The method may include identifying at least one control parameter of a unit of the particle beam device using an eye tracker by tracking at least one eye of a user of the particle beam device, and changing the at least one control parameter of the unit of the particle beam device.
The present invention stores a cooled sample subjected to freezing treatment, or the like, while preventing the formation of condensation and frost-like substances and loads the sample into a sample holder for observation using a charged particle beam device. The present invention is provided with a main body for storing a sample and a lid unit mounted above the main body and is characterized in that the main body is divided into a first space and a second space by a partition member; the first space accommodates a cooling medium for cooling the sample; the second space has, disposed therein, a heating unit for heating the cooling medium accommodated in the first space; and the lid unit has, formed therein, a discharge port for discharging the gas generated by the heating of the cooling medium to the outside.
An input device includes a first part and a second part configured to move relative to each other according to an input operation, a magnetic viscous fluid whose viscosity changes according to a magnetic field, and a magnetic-field generator that generates the magnetic field applied to the magnetic viscous fluid. The second part includes a first surface and a second surface that are arranged in a direction orthogonal to a direction of relative movement between the first part and the second part. Gaps are formed between the first surface and the first part and between the second surface and the first part, and the magnetic viscous fluid is present in at least a part of the gaps.
A key structure includes a support shaft, a resilience sheet, a pedestal and a keycap. While the keycap is pressed down in response to an external force, the support shaft is moved downwardly and the resilience sheet is correspondingly moved. Since a resilience part of the resilience sheet is pushed by a push part of the pedestal, the resilience part is subjected to deformation. After the resilience part is moved across the push part, the resilience part is elastically restored and swung. Consequently, the resilience part collides with the inner surface of the sliding groove to generate a click sound.
A button structure includes a button and a fixing portion; wherein the fixing portion is configured for fixing the button, the fixing portion includes a first latching portion and a second latching portion, and the first latching portion includes a first latching opening, and the second latching portion includes a second latching opening, and the first latching opening has an opening direction substantially perpendicular to an opening direction of the second latching opening, and the first latching opening and the second latching opening are engaged with the button. An electronic device is also provided. The electronic device includes a housing and the button structure, the button structure is received in the housing.
A push-button with a receptacle and a cover plate, an actuating button actuatable in translation between two positions, a rest position and a pushed-in position, the cover plate being arranged at the periphery of the actuating button, a device for guiding the actuating button in translation between the two positions, and a return device for returning the actuating button from the pushed-in position toward the rest position. The guiding device include at least a pin including a bent rod shaped to have a first part pivotally mounted on a fastening unit of the actuating button and a second part pivotally mounted on a fastening unit of the cover plate, and the return device are designed to act on the pin by mechanical or magnetic effect.
A switching device for low or medium voltage electric power distribution networks, the switching device including one or more electric poles and, for each electric pole: an insulating housing defining an internal volume of said electric pole; a first pole terminal and a second pole terminal electrically connectable with a corresponding electric phase conductor of an electric source and with a corresponding electric phase conductor of an electric load, respectively; a movable contact and a fixed contact, which are coupleable/decoupleable one to another, the fixed contact being electric connected with the first pole terminal, the movable contact being electrically connected with the second pole terminal; a stack of semiconductor devices adapted to switch in conduction state or in an interdiction state depending on the voltage provided thereto.
A portable control device designed to control contacts of an electrical switch, and including a main drive shaft, a holding shaft, a motor for driving the main shaft and a microcontroller for controlling the motor. In a first direction of insertion, the main shaft is able to be inserted into a first recess of the switch in order to perform a movement for opening/closing the contacts, the holding shaft then being housed in a first holding orifice. In a second direction of insertion, the main shaft is able to be inserted into a second recess of the switch in order to be able to perform a movement for grounding the contacts, the holding shaft then being housed in a second holding orifice. The control device also includes a detector of the direction of insertion, which detector is linked to the microcontroller.
In an embodiment, an electrochemical device includes a winding structure which has a negative electrode, a positive electrode, and separators stacked and wound together; a negative-electrode terminal; a positive-electrode terminal; a first protective tape which covers the negative-electrode terminal and a negative-electrode active material layer; a second protective tape which covers the positive-electrode terminal and a positive-electrode active material layer; and electrolyte, wherein the positive-electrode terminal is separated from the negative-electrode terminal by a first distance. The width corresponding to the sum of a first width of the first protective tape along a winding direction of the winding structure, and a second width of the second protective tape along the winding direction, is smaller than a value obtained by multiplying the first distance by pi.
The instant invention provides a capacitor package structure having a functional coating and the method for manufacturing the same. The method includes coating a silane coupling agent with a general formula of Y(CH2)nSiX3 on a capacitor element for forming the functional coating, in which X can be a same or different substituents and is selected from the group consisting of chloride, methoxy group, ethoxy group, methoxyethoxy group and acetoxy group, Y is a vinyl group, an amino group, an epoxy group, a methacryloyloxy group, a thiol group, a uramino group or an isobutyl group; and coating a conductive dispersion on the functional coating for enabling a polymer composite material in the functional coating to be connected to the surface of the capacitor element through the silane coupling agent.
Disclosed are a ceramic dielectric including a composite of a first dielectric and a second dielectric, wherein each of the first dielectric and the second dielectric includes strontium (Sr) and niobium (Nb) and has a different crystal system, a ceramic electronic component, and a device.
A magnetic sheet includes a first region and a second region disposed adjacent to each other on a same surface, wherein the first region includes first crack lines formed in a first direction, and the second region includes second crack lines formed in a second direction.
A coil unit includes a ferrite plate including a coil carrying surface and a rear surface opposite to the coil carrying surface, a coil arranged on a side of the coil carrying surface of the ferrite plate, a device arranged on a side of the rear surface of the ferrite plate, and a cooling apparatus which feeds a coolant between the ferrite plate and the device.
A front-side conductive paste for a crystalline silicon solar cell chip is provided. The front-side conductive paste for a crystalline silicon solar cell chip includes, in parts by weight, 80.0-93.0 parts of a metal powder, 6.0-15.0 parts of an organic carrier, and 1.0-5.0 parts of an oxide etching agent. The oxide etching agent contains at least 10-40% of MgO, 0.1-5% of PbO, and 5-30% of Li2O based on 100% by mole, with the molar ratio of MgO:PbO being 10:5˜40:0.1, and the mole ratio of MgO:Li2O being 10:30˜40:5. The metal powder forms good ohmic contact with crystalline silicon substrate during the sintering process of the front-side conductive paste applied overlying an insulation film on the substrate. Finally, a front-side electrode of low contact resistance, good electrical conductivity, and strong adhesion is obtained.
A detection apparatus is usable to detect the neutron absorption capability of a control element of a nuclear installation and includes a neutron radiograph apparatus and a robot apparatus. The neutron radiograph apparatus includes a neutron emission source of variable strength, a detector array, a mask apparatus and a positioning robot all under the control of a central processor and data acquisition unit. The neutron emission source is advantageously switchable between an ON state and OFF state with variable source strength in the ON state, which avoids any need for shielding beyond placing the neutron emission source in an inspection pool at the nuclear plant site including but not limited to the spent fuel or shipping cask laydown pools. The neutron emission source is situated at one side of a wing of the control element and generates a neutron stream, the detector array is situated on an opposite side of a wing, and the neutron emission source and detector array are robotically advanced along the wing. The detector array is monitored in real time, and various masks of the mask apparatus can be positioned between the neutron emission source and the detector array to more specifically identify the position on the blade where the neutrons are passing through.
The present invention relates to a method for determining patient-specific blood vessel information. More specifically, the present invention relates to a method for determining patient-specific cardiovascular information by applying a simplified coronary circulation model thereto. Furthermore, the present invention relates to a method for determining a blood flow rate for branches of a blood vessel having originated from an artery of each patient. According to the present invention, the method for determining cardiovascular information by using a computer system comprises the steps of: receiving image data including a plurality of coronary arteries having originated from the aorta; processing the image data so as to generate a three-dimensional shape model of the plurality of coronary arteries; simulating a blood flow for the generated three-dimensional shape model of the plurality of coronary arteries; and determining a fractional flow reserve (FFR) of the respective coronary arteries with the blood flow simulation result. In the blood flow simulation step for the three-dimensional shape model of the plurality of coronary arteries, a computational fluid dynamics model is applied to the three-dimensional shape model of the coronary arteries, and a centralized parameter model to be combined with the computational fluid dynamics model uses a simplified coronary circulation model including coronary arteries, capillaries of the coronary arteries, and coronary veins.
The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.
The present disclosure relates to a method for monitoring behaviour of a patient in real-time. The method comprises receiving, by a patient monitoring device, data related to the patient from one or more sources. Thereafter, the patient monitoring device classifies the received data into one or more categories based on one or more rules. Further, the patient monitoring device correlates the categorized data to identify one or more activity patterns corresponding to the patient, wherein each of the one or more activity patterns are associated with an activity performed by the patient at predefined time intervals. The patient monitoring devices compares the activity pattern with predefined activity patterns and detects abnormal behaviour of the patient if the identified activity pattern is different from one or more predefined activity patterns corresponding to the patient.
This disclosure describes a system, a method, and a computer program that enable recommendation of a version of firmware for medical devices. In one embodiment, a computer receives packets transmitted over communication networks of medical facilities, where the packets include data related to medical device activity. The computer performs deep packet inspection (DPI) of the packets, and extracts, from results of the DPI, versions of firmware installed on the medical devices. The computer calculates, based on the versions of firmware, extents to which different versions of firmware were installed on the medical devices, and identifies a latest version of firmware, from among the different versions, whose extent of installation reaches a predetermined threshold. The computer can then make a recommendation to update firmware installed on one or more medical devices at a certain medical facility to the latest version.
Methods of reliably estimating genomic fraction (e.g., fetal fraction) from polymorphisms such as small base variations or insertions-deletions are disclosed. Sequenced data from a multigenomic source is used to determine allele counts for one or more of the polymorphisms. For one or more of the polymorphisms, zygosity is assigned, and genomic fraction is determined from the zygosity and allele counts. Certain embodiments employ SNPs as the relevant polymorphism. The disclosed methods can be applied as part of an intentional, pre-designed re-sequencing study targeted against known polymorphisms or can be used in a retrospective analysis of variations found by coincidence in overlapping sequences generated from maternal plasma (or any other setting where a mixture of DNA from several people are present).
Short fixed length sub-sequences, defined as reference sub-sequences, are extracted from a collection of reference sequences, and an index is constructed showing which short fixed length reference sub-sequence occurs in which reference sequences. Short fixed length sub-sequences, the same length as the reference sub-sequences and defined as source sub-sequences, are extracted from a collection of source sequences derived from a sample for which the signature is to be determined, and the short fixed length source sub-sequences are compiled to determine the frequency of each within the collection. The presence or absence of source sub-sequences in combination with the index is used to infer the presence or absence of reference sequences from the reference collection.
Described herein are embodiments related to first-pass continuous read level calibration (cRLC) operations on memory cells of memory systems. A processing device determines that a first programming pass of a programming operation has been performed on a memory cell of a memory component. The processing device performs a cRLC operation on the memory cell to calibrate a read level threshold between a first first-pass programming distribution and a second first-pass programming distribution before a second programming pass of the programming operation is performed on the memory cell.
A shift register circuit, a driving method, a gate driving circuit, and a display device are provided. The shift register circuit includes a clock signal adjustment circuit and a self-control conduction circuit; the clock signal adjustment circuit includes a first clock signal input terminal, a second clock signal input terminal, and a clock signal adjustment output terminal; the clock signal adjusting circuit is configured to, in the case that the first clock signal and the second clock signal are both at a second level, output a first level via a clock signal adjustment output terminal; the self-control conduction circuit is configured to, in the case that the pull-up node is at the first level, control the clock signal adjustment output terminal connect with a pull-up node, or in the case that the pull-up node is at a second level, disconnect the clock signal adjustment output terminal from the pull-up node.
A semiconductor memory device of one embodiment includes a p-type first semiconductor region, n word lines from the first to nth word lines stacked on the first semiconductor region in a first direction, an n-type second semiconductor region, a semiconductor layer between the first semiconductor region and the second semiconductor region, extending in the first direction, and intersecting with the n word lines, and a control circuit which, when verifying whether or not a kth memory cell provided in a region where a kth (4
A method for optimizing a read threshold voltage shift value in a NAND flash memory may be provided. The method comprises selecting a group of memory pages, determining a current threshold voltage shift (TVS) value, and determining a negative and a positive threshold voltage shift offset value. Then, the method comprises repeating a loop process comprising reading all memory pages with different read TVS values, determining maximum raw bit error rates for the group of memory pages, determining a direction of change for the current TVS value, determining a new current TVS value by applying a function to the current TVS value using as parameters the current threshold voltage, the direction of change and the positive and the negative TVS value, until a stop condition is fulfilled such that a lowest possible number of read errors per group of memory pages is reached.
A memory device may include a local bit line electrically coupled to a plurality of memory cells and a global bit line electrically coupled to the local bit line through first and second selectable parallel paths having first and second impedances, respectively. The first path may be active and the second path may be in an off state in at least one of a set operation or a forming operation. The second path may be active in a reset operation, wherein the second impedance of the second path has a lower impedance than the first impedance of the first path.
A forming method of a resistive memory device is provided. The forming method includes: conducting a forming procedure to apply a forming voltage to the resistive memory device such that the resistive memory device changes from a high resistive state to a low resistive state and measuring a first current of the resistive memory device; performing a thermal step on the resistive memory device and measuring a second current of the resistive memory device; and comparing the second current to the first current and determining to apply a first voltage signal or a second voltage signal to the resistive memory device or to finish the forming procedure according to a comparison result of the first current and the second current. In addition, a memory storage apparatus including a resistive memory device is also provided.
Certain aspects of the present disclosure provide apparatus and methods for performing memory read operations. One example method generally includes precharging a plurality of memory columns during a precharging phase of a read access cycle. The method also includes sensing first data stored in a first memory cell of a first memory column of the plurality of memory columns during a memory read phase of the read access cycle, and sensing second data stored in a second memory cell of a second memory column of the plurality of memory columns during the same memory read phase of the read access cycle.
Devices and methods are provided for word line pulse width control for a static random access memory (SRAM) devices. An inverter within a pre-decoder circuit receives a first input of a clocked address. The inverter determines an output based on the clocked address. An electrical load of a decoder driver circuit of the SRAM device is modified based on the output. Current to a transistor coupled at a common node is provided. The transistor is configured to electrically couple a plurality of transistors of the decoder driver circuit within the SRAM device.
A volatile memory device includes a refresh controller configured to control a hidden refresh operation performed on a first portion of memory cells while a valid operation is performed on a second portion of the memory cells. The volatile memory device is configured to perform a regular refresh operation in response to receiving a refresh command. The refresh controller is configured to generate refresh information using a performance indicator of the hidden refresh operation during a first part of a reference time. The volatile memory device is configured to perform a desired number of the regular refresh operation during a remaining part of the reference time based on the refresh information. The desired number of the regular refresh operation is an integer based on a difference between a target number of refresh operations during the reference time and a count value of the hidden refresh operation during the reference time.
A magnetic storage device includes a plurality of first wires extending along a first direction and a plurality of second wires extending along a second direction different from the first direction. The plurality of second wires form a grid with the plurality of first wires. The magnetic storage device further includes a plurality of spin orbit torque magnetic random access memory (SOT-MRAM) devices. Each of the plurality of SOT-MRAM devices is disposed at a respective position on the grid. The magnetic storage device further includes write circuitry, including a transistor coupled to each respective first wire of the plurality of first wires, to apply a first write current along the respective first wire in the first direction, and readout circuitry to read a data value stored by a respective SOT-MRAM device.
The present disclosure includes apparatuses and methods related to shifting data. A number of embodiments of the present disclosure include an apparatus comprising a shift register comprising an initial stage and a final stage. The shift register may be configured such that a clock signal may be initiated at the final stage of the shift register.
A semiconductor device includes a shift register and a control signal generation circuit. The shift register generates shifted pulses, wherein a number of the shifted pulses is controlled according to a mode of a burst length. The control signal generation circuit generates a control signal for setting a burst operation period according to a period during which the shifted pulses are created. The burst operation period is a period during which a burst operation is performed.
A voltage generating system including: a voltage source, a clock generating circuit, and a voltage generating circuit. The voltage source generates a reference voltage. The clock generating circuit generates a first clock signal and a second clock signal according to the reference voltage. The voltage generating circuit including an output circuit and a switch circuit. The output circuit generates a control signal at a control node according to the first clock signal and the reference voltage, generates an output signal at an output node according to the second clock signal and the reference voltage. An absolute value of an amplitude of the output signal is greater than the reference voltage while an absolute value of an amplitude of the control signal is greater than the reference voltage. The switch circuit selectively outputs the output signal to an output terminal according to the control signal.
An apparatus comprises a plurality of memory cells in rows and columns, a first word line electrically coupled to a first group of memory cells through a first word line strap structure comprising a first gate contact, a first-level via, a first metal line and a second-level via and a second word line electrically coupled to a second group of memory cells through a second word line strap structure, wherein the second word line strap structure and the first word line strap structure are separated by at least two memory cells.
To make it possible to select images for generating a moving image even when individual playback times of images which are targeted for selection differ from each other. The image acquisition unit acquires a plurality of images. The feature amount calculation unit evaluates the plurality of images acquired. The moving image playback time setting unit sets a total playback time of data composed of the plurality of images. The image playback time setting unit sets individual playback times for each of the plurality of images. The image selection unit selects a predetermined number of images according to the total playback time from the plurality of images, based on (i) evaluation results of the plurality of images which have been evaluated, and (ii) the individual playback times which have been set, and (iii) the total playback time which has been set.
A slider configured for heat-assisted magnetic recording comprises a magnetic writer, a near-field transducer, and an optical waveguide coupling the near-field transducer to a light source. The writer is situated proximate the near-field transducer at an air bearing surface of the slider and comprises a first return pole, a second return pole, and a write pole situated between and spaced apart from the first return pole and the second return pole. A structural element is situated at or near the air bearing surface between the write pole and one of the first and second return poles. The structural element comprises a cavity. A thermal sensor is disposed in the cavity. The thermal sensor is configured for sensing contact between the slider and a magnetic recording medium, asperities of the medium, and output optical power of the light source.
Provided is a magnetic recording medium, which is a magnetic recording medium for microwave-assisted recording and includes a non-magnetic support; and a magnetic layer including a ferromagnetic powder and a binding agent on the non-magnetic support, in which the magnetic layer shows a natural ferromagnetic resonance frequency equal to or greater than 30.0 GHz and an anisotropic magnetic field distribution equal to or smaller than 35%.
According to one embodiment, a disk device comprises a plurality of rotatable magnetic disks, a first actuator assembly, and a second actuator assembly. A slit provided in each of arms of the first actuator assembly is provided to be offset in a direction spaced away from a border plane between actuator assemblies with respect to a center of the arm in its thickness direction. A connection end portion of a wiring member is partially located in the slit, such as to be offset in a direction spaced away from the border plane, and disposed on a wiring board, and joined to the wiring board.
Systems and methods are disclosed for displaying electronic multimedia content to a user. One computer-implemented method for manipulating electronic multimedia content includes generating, using a processor, a speech model and at least one speaker model of an individual speaker. The method further includes receiving electronic media content over a network; extracting an audio track from the electronic media content; and detecting speech segments within the electronic media content based on the speech model. The method further includes detecting a speaker segment within the electronic media content and calculating a probability of the detected speaker segment involving the individual speaker based on the at least one speaker model.
System and techniques for automatic gain control for speech recognition are described herein. An audio signal may be obtained. A signal-to-noise ratio (SNR) may be derived from the audio signal. The SNR may be compared to a threshold. A stored gain value may be updated when the SNR is beyond the threshold and the stored gain value may be applied to a descendant (e.g., later) of the audio signal otherwise.
A decoder for generating a frequency enhanced audio signal, includes: a feature extractor for extracting a feature from a core signal; a side information extractor for extracting a selection side information associated with the core signal; a parameter generator for generating a parametric representation for estimating a spectral range of the frequency enhanced audio signal not defined by the core signal, wherein the parameter generator is configured to provide a number of parametric representation alternatives in response to the feature, and wherein the parameter generator is configured to select one of the parametric representation alternatives as the parametric representation in response to the selection side information; and a signal estimator for estimating the frequency enhanced audio signal using the parametric representation selected.
In general, techniques are described by which to provide priority information for higher order ambisonic (HOA) audio data. A device comprising a memory and a processor may perform the techniques. The memory stores HOA coefficients of the HOA audio data, the HOA coefficients representative of a soundfield. The processor may decompose the HOA coefficients into a sound component and a corresponding spatial component, the corresponding spatial component defining shape, width, and directions of the sound component, and the corresponding spatial component defined in a spherical harmonic domain. The processor may also determine, based on one or more of the sound component and the corresponding spatial component, priority information indicative of a priority of the sound component relative to other sound components of the soundfield, and specify, in a data object representative of a compressed version of the HOA audio data, the sound component and the priority information.
A method to interactively convert a source language video/audio stream into one or more target languages in high definition video format using a computer. The spoken words in the converted language are synchronized with synthesized movements of a rendered mouth. Original audio and video streams from pre-recorded or live sermons are synthesized into another language with the original emotional and tonal characteristics. The original sermon could be in any language and be translated into any other language. The mouth and jaw are digitally rendered with viseme and phoneme morphing targets that are pre-generated for lip synching with the synthesized target language audio. Each video image frame has the simulated lips and jaw inserted over the original. The new audio and video image then encoded and uploaded for internee viewing or recording to a storage medium.
An apparatus and method for executing a voice command in an electronic device. In an exemplary embodiment, a voice signal is detected and speech thereof is recognized. When the recognized speech contains a wakeup command, a voice command mode is activated, and a signal containing at least a portion of the detected voice signal is transmitted to a server. The server generates a control signal or a result signal corresponding to the voice command, and transmits the same to the electronic device. The device receives and processes the control or result signal, and awakens. Thereby, voice commands are executed without the need for the user to physically touch the electronic device.
An information processing system, a computer program product, and methods for modeling multi-party dialog interactions. A method includes learning, directly from data obtained from a multi-party conversational channel, to identify particular multi-party dialog threads as well as participants in one or more conversations. Each participant utterance being converted to a continuous vector representation updated in a model of the multi-party dialog relative to each participant utterance and according to each participant's role selected from the set of: sender, addressee, or observer. The method trains the model to choose a correct addressee and a correct response for each participant utterance, using a joint selection criterion. The method learns directly from the data obtained from the multi-party conversational channel, which dialog turns belong to each particular multi-party dialog thread.
An electronic device with one or more processors and memory includes a procedure for sharing information with a third party recipient. In some embodiments, the device receives a speech input from a first user, the speech input specifying a second user different from the first user, and an information item to be shared with the second user. In response to the speech input, the device initiates a background process during which a digital assistant searches for the information item and causes the information item to be sent to the second user without further review and instruction from the first user.
A dialog content is generated using information that is unique to a user and information that is not unique. The processing executed by a dialog system includes a step of identifying a person based on a dialog with a user, a step of acquiring personal information, a step of analyzing the dialog, a step of extracting an event, a step of searching for a local episode and a global episode based on the personal information and the event, a step of generating dialog data using the search result, a step of outputting a dialog, and a step of accepting user evaluation.
Provided is a target speech signal extraction method for robust speech recognition including: (a) receiving information on a direction of arrival of the target speech source with respect to the microphones; (b) generating a nullformer by using the information on the direction of arrival of the target speech source to remove the target speech signal from the input signals and to estimate noise; (c) setting a real output of the target speech source using an adaptive vector w(k) as a first channel and setting a dummy output by the nullformer as a remaining channel; (d) setting a cost function for minimizing dependency between the real output of the target speech source and the dummy output using the nullformer by performing independent component analysis (ICA); and (e) estimating the target speech signal by using the cost function, thereby extracting the target speech signal from the input signals.
A system, method and program product for generating sound masking in an open-plan space. A method is disclosed that includes: establishing a set of acoustic criteria for the space that specifies minimum output levels at a set of specified frequencies; mixing sound samples to create an audio output stream for use as sound masking when broadcast over at least one speaker using a power amplifier; and processing the audio output stream, wherein the processing includes: analyzing the audio output stream with a spectrum analyzer to determine if the minimum output levels at the set of specified frequencies are met; and level adjusting the audio output stream with an equalizer to ensure that minimum output levels at the set of specified frequencies are met but do not exceed a given threshold above the minimum level.
A noise control method and device are provided that relate to the field of noise control. A noise control method includes: acquiring noise information of an ambient environment; and judging whether the noise information satisfies a predetermined condition, and if so, sending a noise control message to another device, the noise control message being used to notify the other device to adjust a volume. Another noise control method includes: receiving, by a device, a noise control message from an external device; and adjusting a volume based on a volume adjustment policy according to the noise control message and a current volume of the device. The noise control method and device in the embodiments of the present application may easily and quickly realize control over ambient noise, thereby improving user experience.
Electronic cymbal assemblies are disclosed. Assemblies according to the disclosure can include a single frame and a cover thereon, the cover including a cutout with flat edges to prevent accidental rotation of cymbal assembly components. Assemblies according to the present disclosure can also include non-planar sensors that can be applied to the bell and edge portions of a frame, sensors and frames with respective protrusions and bumps to mate with one another, and cover undersides with non-smooth surfaces to increase sensitivity to user actuation.
A modular instrument pedalboard is provided. The modular instrument pedalboard provides a plurality removably connectable pods, which may be effect pedal pods, power distribution pods, audio distribution pods, power/audio distribution pods, or a combination thereof. The pods include a base that has a first part of a connector that is adapted to be coupled to a second part of the connector which allows the pods to be connected, rearranged, expanded, contracted, and/or a combination thereof. Further the connectable pods include a circuit board to for parts of one or more audio loops as well as a power bar to transmit audio signals and power between pods.
A topboard reflection preventer for a grand piano, which is capable of positively preventing lighting from being reflected by an open topboard, while maintaining excellent appearance of a piano body. The topboard reflection preventer for a grand piano is attached to an openable and closable topboard formed by a topboard rear and a topboard front, and prevents lighting from above from being reflected by the topboard in a state of the topboard held open in an inclined position. The topboard reflection preventer includes a reflection preventer body attached to the topboard rear and the topboard front folded onto the topboard rear, in a state covering whole upper surfaces of the topboard rear and the topboard front, and a holding member for holding the reflection preventer body so as to prevent the reflection preventer body from falling off the topboard held open in the inclined position.
An image receiving device includes an image processing unit that rotates at least one of first and second images in a process of restoring the first and second images if an image transfer signal received by the image receiving device includes the first and second images in which a direction in which a scan line of the first image extends is different from a direction in which a scan line of the second image extends.
According to one embodiment, there is provided a mobile terminal including a terminal body that includes a first body and a second body, which is formed to be switchable between an opened state and a close state; a hinge unit that supports the first and second bodies to be rotated relative to each other; and a display unit that includes an inside-surface display area s, and first and second extension display areas, in which information associated with a first screen is displayed on any one of the first and second extension display areas, in which an icon which indicates that the first and second extension display area are combinable is displayed along with information associated with the first screen, and in which the information associated with the first screen is changed and the changed information is displayed on a combined extension display area.
A display may have curved edges such as rounded corners. Pixels in the display may be controlled so that the active area of the display has the desired curved edge shape. In order to maximize the apparent smoothness of the curved edge, the display may include circuitry that dims some of the pixels based on their location relative to a spline for the curved edge. The display circuitry may include a multiplication circuit that receives image data as a first input and dimming factors from a gain table as a second input. The image data may include a brightness level for each pixel in the array of pixels. The multiplication circuit may multiply the brightness level for each pixel by its respective dimming factor. This modified image data may then be supplied to the imaging pixels using display driver circuitry.
A display device includes: a base substrate having a first surface and a second surface opposite the first surface, the base substrate including a plurality of pixels on the first surface of the base substrate; a protective layer on the second surface of the base substrate, the protective layer having a first opening; a light sensor corresponding to the first opening; and a circuit board on the protective layer. The light sensor is mounted on the circuit board.
Varying electrical currents are selectively applied to each pixel within an OLED display to create desired images. High applied electrical currents to groupings of nearby pixels create high luminance features, while low applied electrical currents to groupings of nearby pixels create low luminance features. A combination of a high luminance and low luminance features may be present on the OLED display. Pulse-width modulation (PWM) is often used to increase the current applied to the OLED display by modulating the applied current, particularly when creating low luminance features. The presently disclosed systems and methods detect a gray portion of an image to be presented, and select PWM independently of peak luminance based on the detected gray portion. The allows the OLED display to display low-luminance features at high quality, even when high-luminance features are also present within a frame.
A pixel driving circuit, a driving method thereof and an OLED display panel are provided. A plurality of scanning lines and a plurality of data lines of the pixel driving circuit intersect to define a plurality of pixel units, the plurality of pixel units in each row are connected to a corresponding scanning line and a corresponding power line, the plurality of pixel units in each column are connected to a corresponding data line, in a scanning period, scanning signal is input to an end of the scanning line to drive the plurality of pixel units along a first direction, power driving signal is input to an end of the power line opposite to the end of the scanning line to which the scanning signal is input to drive the plurality of pixel units along a second direction, the first direction and the second direction are opposite.
There provide a pixel driving circuit and driving method thereof, an array substrate and display apparatus, wherein the pixel driving circuit comprises: a data line; a gate line; a first power supply line; a second power supply line; a light emitting device connected to the second power supply line; a driving transistor connected to the first power supply line; a storage capacitor having a first terminal connected to a gate of the driving transistor and configured to transfer information including the data voltage to the gate of the driving transistor; a resetting unit configured to reset a voltage across the storage capacitor as a predetermined signal voltage; a data writing unit configured to write information including the data voltage into the second terminal of the storage capacitor; a compensating unit configured to write information including a threshold voltage of the driving transistor and information of the first power supply voltage into the first terminal of the storage capacitor; and a light emitting control unit connected to the storage capacitor, the driving transistor and the light emitting device, and configured to control the driving transistor to drive the light emitting device to emit light.
A display device includes: a display panel including display elements each including a light emitting unit and a drive circuit for driving the light emitting unit, the display elements being arranged in a two-dimensional matrix on a substrate; and a luminance correction unit for correcting luminances of the display elements in display of an image by the display panel by correcting a gradation value of a video signal, in which a partition (60) for guiding stray light from a light emitting unit to an optical sensor (4) provided on the display panel is provided between adjacent light emitting units of the display panel, and the luminance correction unit corrects a gradation value of a video signal associated with each of the display elements on the basis of a gradation value of an uncorrected video signal and a detection result from the optical sensor.
The present disclosure provides a driving circuit, a display device and a driving method. The driving circuit includes a shift register including: a first input unit for controlling a first node based on signals at first and second clock signal terminals, an input signal terminal, a second node and an output signal terminal; a second input unit for providing a signal at a first constant potential terminal to the second node under control of the first clock signal terminal and providing the signal at the input signal terminal or the first clock signal terminal to the second node under control of the first node; and an output unit for providing a signal at the second clock signal terminal to the output signal terminal under control of the first node and providing a signal at a second constant potential terminal to the output signal terminal under control of the second node.
Provided is a color adjustment method for a display apparatus. The color adjustment method includes: measuring first luminance coordinate data indicating a luminance and color coordinates of a color displayed on a display device when image data corresponding to a white point is supplied to a drive circuitry; measuring second luminance coordinate data indicating luminances and color coordinates of colors displayed on the display device when image data corresponding to the white color of intermediate grayscale values are supplied to the drive circuitry; measuring third luminance coordinate data indicating a luminance and color coordinates of a color displayed on the display device for each of R, G and B elementary color points when image data corresponding to each of the R, G and B elementary color points is supplied to the drive circuitry; and calculating correction parameters based on the first to third luminance coordinate data.
A display device, a gate drive circuit, a shift register and its control method are described. The shift register includes: an input circuit, a first output circuit, a second output circuit, a control circuit and an output drive circuit, wherein the output drive circuit is connected to a second signal input terminal, a pull-up node, a control terminal of the second output circuit and a low voltage signal terminal, and is configured to write a voltage of the second signal input terminal into the control terminal of the second output circuit and superimpose a voltage of the pull-up node onto the control terminal of the second output circuit under the control of a second input signal provided at the second signal input terminal, such that the second output circuit is fully turned on to ensure that it has good output capability when working at a low temperature.
A driving method for a display device, timing controller and display device. The driving method includes: acquiring a target update frequency of image display of a display panel; determining a target frame rate corresponding to the target update frequency according to a prestored corresponding relationship between update frequencies and frame rates; adjusting a blanking duration of a data signal output by a source driving circuit according to the target frame rate; and outputting a first control signal with a frequency being the target frame rate to a gate driving circuit, to cause the gate driving circuit to scan pixel units of the display panel according to the target frame rate.
A simulated abdominal wall model that is ideal for practicing laparoscopic first entry surgical techniques is provided. The model includes a simulated abdominal wall portion captured between two frame elements of a support. The support is connectable to a surgical trainer. When connected to the trainer, the model provides a penetrable abdominal tissue portion for accessing an internal cavity of the trainer. The simulated abdominal wall includes a plurality of layers including a skin layer, a fabric posterior rectus sheath layer, a simulated fat layer of low-resilience polyurethane foam and at least two layers that provide distinctive haptic feedback upon penetration of the simulated transversalis fascia and muscle layers. The simulated abdominal wall includes a simulated umbilicus across several layers of simulated tissue.
A computer-implemented method includes: displaying, by a computer device, video content on a display of the computer device; determining, by the computer device, a moving object in the video content; and controlling, by the computer device, a plurality of microbots to move, on the display, over locations of the object in the video content.
An inkjet recording apparatus includes an image forming device and a controller. The image forming device includes a recording head unit and forms on paper a fold line image representing a fold line. The controller includes a first selection section. The first selection section selects formation of the fold line image in a “first manner” or a “second manner”. In the “first manner”, the fold line image is formed so as to become invisible after a first period elapses from a first time point at which the fold line image is formed on the paper. In the “second manner”, the fold line image is formed so as not to become invisible even after a second period elapses from the first time point. The second period is longer than the first period.
Present embodiments include systems and methods for stick welding applications. In certain embodiments, simulation stick welding electrode holders may include stick electrode retraction assemblies configured to mechanically retract a simulation stick electrode toward the stick electrode retraction assembly to simulate consumption of the simulation stick electrode during a simulated stick welding process. In addition, in certain embodiments, stick welding electrode holders may include various input and output elements that enable, for example, control inputs to be input via the stick welding electrode holders, and operational statuses to be output via the stick welding electrode holders. Furthermore, in certain embodiments, a welding training system interface may be used to facilitate communication and cooperation of various stick welding electrode holders with a welding training system.
A system and method for navigating a vehicle comprising an image sensor in the absence of global positioning information is disclosed. In one embodiment, the method comprises accepting a user-selected target of an image produced by the imaging sensor, determining a difference between an optic flow due only to motion of the vehicle and the selected target of the image, determining a vehicle guidance command at least in part according to the difference between the optic flow of the selected target due to motion of the vehicle and the selected target of the image, and an estimate of a ground speed of the vehicle Vg, and commanding the vehicle at least in part according to the vehicle guidance command. Another embodiment is evidenced by an apparatus having a processor and a communicatively coupled memory storing processor instructions for performing the foregoing operations.
A method of calculation, by a flight management system termed FMS, of a trajectory flown by an aircraft comprises the steps, calculated by the FMS, of: for at least one transition of the trajectory arising from the flight plan: 1) determining an initial transition comprising at least one arc exhibiting a single initial turning radius, 2) determining an initial trajectory incorporating the initial transition, 3) determining for each parameter a plurality of predicted values of the parameter in the course of the initial transition, 4) determining a plurality of ordered subdivisions of the arc of the initial transition according to a predetermined criterion, 5) determining, for each subdivision, an associated turning radius, 6) determining an improved transition on the basis of the ordered subdivisions and of the successive associated turning radii, 7) determining an improved trajectory incorporating the improved transition, 8) displaying the improved trajectory to a pilot of the aircraft.
Disclosed are algorithms and agent-based structures for a system and technique for analyzing and managing the airspace. The technique includes managing bulk properties of large numbers of heterogeneous multidimensional aircraft trajectories in an airspace, for the purpose of maintaining or increasing system safety, and to identify possible phase transition structures to predict when an airspace will approach the limits of its capacity. The paths of the multidimensional aircraft trajectories are continuously recalculated in the presence of changing conditions (traffic, exclusionary airspace, weather, for example) while optimizing performance measures and performing trajectory conflict detection and resolution. Such trajectories are represented as extended objects endowed with pseudo-potential, maintaining objectives for time, acceleration limits, and fuel-efficient paths by bending just enough to accommodate separation.
A system and method system for determining when an object detected by a collision avoidance sensor on one member of an articulated vehicle comprises another member of the vehicle are provided. The system includes a collision avoidance sensor disposed on a first member of the vehicle and configured to detect an object within a field of view of the sensor on a side of the first member of the vehicle. The system further includes a controller configured to determine an articulation angle between the first member of the vehicle and a second member of the vehicle and to determine in response to the articulation angle, whether the second member of the vehicle is the object within the field of view of the collision avoidance sensor on the first member of the vehicle.
A warning system for use on a first vehicle includes a warning device connected to a control assembly. The control assembly includes a controller, a processor, a memory and a power supply. A GPS receiver is connected to the control assembly for determining the geographic location of the vehicle and for acquiring a local map of the vicinity of the vehicle. The control assembly also includes an intersection detection system for identifying a target intersection being approached by the vehicle and is configured to determine whether the vehicle is in the proximity of the target intersection. The control assembly also is configured to activate the warning system to issue a warning when the vehicle is within the predetermined proximity of a target intersection.
A method includes receiving, by a user device, information regarding a sensed condition in a structure. The sensed condition is sensed by a sensory node. The method also includes providing, by the user device, a notification identifying the sensed condition to a user of the user device, and receiving, by the user device, information regarding navigable pathways of the structure. The method further includes determining, by the user device, a location of the user device, and identifying, by the user device, a first evacuation route based at least in part on the information regarding the sensed condition, the information regarding navigable pathways of the structure, and the location of the user device. The method also includes displaying, by the user device, the first evacuation route.
A building alarm system and automated door lock arranged to place the alarm system in an armed state when a door lock fails to engage to lock an associated door in a closed position. Activation of a single button by a user or use of specific code by a user to gain access to a building can cause the alarm system to automatically rearm and for door locks at the building to be locked after entry by the user. A first responder code can be used by first responder personnel to gain access to a building after an alarm system indicates an alarm state, e.g., that corresponds to an emergency condition.
Arrangements relate to the automatic adjustment of an alert trigger threshold associated with a metric. In response to a determination that a predetermined alert trigger threshold associated with a metric is met, an alert notification can be sent to a plurality of users associated with the metric. Feedback on the alert notification can be received from one or more of the plurality of users. The alert trigger threshold can be adjusted based on the received feedback. Such adjusting can be performed using a processor.
A system for monitoring the movements or other activities of patient. Aspects include a monitoring device with one or more sensors such as a pressure or motion sensors that may be positioned on or near a patient. Alerts may be generated by the monitoring device if the sensor readings fall outside predetermined limits set in a patient profile specific to a particular patient. Sensor readings and/or alerts may be sent by the monitoring device to the central server which may notify nearby caregivers that a patient needs assistance. The server may be configured to analyze sensor readings and alert information to refine patient profiles to reduce or eliminate false alarms.
Techniques are generally described for controlling a camera to capture video based on one or more auxiliary motion sensors. First data indicative of motion may be received from a first motion sensor at a camera. In some examples, the first motion sensor may have a first field-of-view. Second data indicative of motion may be received from a second motion sensor at the camera device. In some examples, the second motion sensor may have a second field-of-view different than the first field-of-view. A determination may be made that the first data temporally corresponds to the second data. In some examples, an image sensor of the camera may capture first image data in response to the first data indicative of motion and the second data indicative of motion.
Systems and methods for generating a haptic output from an audio signal having a continuous stream of sampled digital audio data are provided. A haptic processing system receives the digital audio data, analyses the digital audio data for processing and extracts haptic signals for generating a haptic effect through an actuator. The method includes passing the digital audio signal on through dynamic processor(s), adjusting the dynamic range of the digital audio signal, extracting the signal envelope of the audio data, synthesising low-frequency signals from the extracted signal envelope, and enhancing the low-frequency content using a resonator. The haptic output is generated by mixing the digital audio signal with outputs from the different modules of the haptic processing system. An analytics module monitors, controls and adjusts the processing of the digital audio signal at the noise gate module, the compressor module and the envelope module to enhance the haptic output.
A system, including: a sensor that monitors containers as the containers move along a production line; a rejection device; a controller communicatively connected to the sensor and the rejection device, wherein the controller is programmed to determine whether a container is associated with a match condition in response to a signal received from the sensor, the match condition reflecting that the container is associated with predetermined properties or characteristics, in response to a match condition, determine a pass result, and otherwise determine a fail result, determine a velocity of the production line, dynamically determine a correction amount for a reject position, track a position of the container on the production line, and in response to the fail result, outputs a signal to actuate the rejection device that removes the container from the production line based on the velocity of the production line, the dynamically determined correction amount, and the position of the container on the production line.
Embodiments of the method for authenticating may include causing an automated teller machine to replace a card verification value with an updated card verification value during a first transaction at the automated teller machine when a re-write condition is present, such as a request from an account holder, a determination that the security of the card was compromised during a prior transaction, a predetermined time interval has lapsed, a predetermined number of transactions have occurred since a previous time the card verification value was rewritten, and according to a predetermined geographical parameter. The updated card verification value may be stored as a current value in a verification value database. The method may include receiving a card verification request related to a second transaction, and authenticating, using verification logic, the second transaction by determining whether the card verification value for the second transaction matches the current value stored in the database.
According to an embodiment, a method includes receiving a plurality of bets, in which each bet defines a respective amounted wagered, a respective area, and a respective weather-related event. Data that represents the plurality of bets is displayed. An outcome of a weather-related event is determined and at least one winner is determined based on the bets and the outcome.
A gaming machine provides a base game, from which a hold and spin feature game is triggered when a determined number of configurable symbols are displayed in a base game outcome. When the feature game is triggered, the configurable symbols are held in place on the display and the player is provided one or more spins during the feature game in which to collect additional configurable symbols. Any additional configurable symbols are retained on the display during subsequent spins until the feature game is completed. At the end of the feature game, the player is awarded a prize based on the values carried by the configurable symbols. An ante bet entitles to player to additional game instances in the hold and spin feature game. The additional game instances duplicate the configurable symbols that trigger the feature game, but are played independently from one another during the hold and spin feature.
Embodiments of the present invention are directed to gaming devices that provide audio-visual animated characters in response to game play. The character has a personality that may be encouraging, taunting or another quality. A plurality of expressions of the personality is presented, between one extreme and another, dependant upon the history of game outcomes.
An inflation machine configured to inflate an item. The inflation machine includes: (i) an air pump; (ii) a first air dispenser having a first hose and a first air chuck, where the first air dispenser is an analog dispenser and is in communication with the air pump; (iii) a second air dispenser having a second hose and a second air chuck, where the second air dispenser is a digital dispenser and is in communication with the air pump; and (iv) a controller configured to activate the first air dispenser or the second air dispenser in response to a user input.
A dual-factor PIN based authentication system and method uses a cryptogram provided by a contactless card associated with the client in association with a PIN stored by the contactless card to authenticate the client. In some embodiments, cryptogram authentication may be preconditioned upon a PIN match determination by the contactless card. In other embodiments, the cryptogram may be formed at least in part using the personal identification number (PIN) stored on the contactless card encoded using a dynamic key stored by the contactless card and uniquely associated with the client. Authentication may be achieved by comparing the cryptogram formed using the PIN against an expected cryptogram generated an expected PIN and an expected dynamic key.
A device for at least one of inputting or outputting one or a plurality of security documents includes a security container for keeping available the documents, a first input/output interface and a second input/output interface, and a head unit which is mounted so as to be displaceable to a plurality of positions relative to the container. The head unit is configured to, in a first position of the plurality of positions, by means of the first input/output interface, transfer one or a plurality of security documents into or out of the device, in a second position of the plurality of positions, by means of the second input/output interface, transfer one or a plurality of security documents into or out of the device, and, in a third position of the plurality of positions, transfer one or a plurality of security documents between the head unit and the container.
An access control device according to one embodiment includes an access control mechanism, a housing, an antenna array secured within the housing and including a first, second, and third antenna adapted to radiate away from the exterior side of the door, a processor, and a memory. The memory includes a plurality of instructions that, when executed, causes the access control device to determine signal strengths of signals received by the first, second, and third antennas from the mobile device, determine whether a location of the mobile device relative to the access control device is indicative of the mobile device user's intent to access the passageway based on the signal strengths, and automatically unlock the access control mechanism in response to the location being indicative of the user's intent to access the passageway.
A system including a reader device and a mobile device having a user credential. The reader device includes an ultrasonic transmitter configured to transmit an identifier, and a wireless transceiver configured to receive information from and transmit information to the mobile device. The identifier is configured to be received by a microphone of the mobile device. The mobile device may determine a position of the mobile device based on the identifier.
In one embodiment, a method includes receiving on-board diagnostic (OBD) data from an OBD port of a vehicle, receiving tire pressure data from one or more tire pressure monitoring system (TPMS) sensors, and receiving accelerometer data from one or more accelerometers. The method further includes determining, based on at least some of the OBD data and at least some of the accelerometer data, recommended tires to install on the vehicle. The method further includes determining, based on at least some of the OBD data and at least some of the tire pressure data, a recommended tire pressure for at least one tire of the vehicle. The method further includes sending information to display the recommended tires to install on the vehicle and the recommended tire pressure on a display device.
A system for adaptable trend detection for component condition indicator data includes a sensor operable to measure an operating condition of a vehicle and generate a sensor signal associated with the operating condition and a data server operable to acquire a current condition indicator of a condition indicator set according to the sensor signal, and to determine whether a trend in the condition indicator set is indicated according to at least the current condition indicator, at least one previous condition indicator of the condition indicator set and a volatility of at least a portion of the condition indicator set. The data server is further operable to provide an alert in response to determining that the trend is indicated.
A system and method for providing legal parking guidance includes a server which stores legal parking related data having one or more data types. The server receives, from a user computing device, user data which includes a user type corresponding to one or more of the data types and real-time location data associated with one or more locations of a user. The server also identifies one or more potentially available legal parking locations based on the legal parking related data, the location data, and the user type, and transmits at least a portion of data associated with at least one of the one or more potentially available legal parking locations to the user computing device. The user type includes at least one of commercial vehicle user, non-commercial vehicle user, user vehicle-type, or user vehicle-plate-type. The system may also include a location identifier and an accelerometer to monitor the speed, location, parking intent, or leaving intent of a user.
Methods and devices for selecting objects in images are described. In one example aspect, a method includes: receiving stereoscopic image data, the stereoscopic image data includes a first image obtained from a first camera and a second image obtained from a second camera; identifying an object in the first image by analyzing the first image and the second image; displaying the first image, the identified object in the first image being selectable.
An augmented reality projection device includes an image sensor having a field of view into a real-world environment, a spatial sensor configured to detect a location and an orientation of the device in the environment, and a projector configured to project content onto a physical surface within the environment. The device determines the location and orientation of the device based on sensor output from the spatial sensor, and determines that a virtual target object is included within the field of view of the image sensor based on the determined location and orientation and based on a particular target object profile from a library of predetermined target object profiles. The device identifies content associated with the virtual target object and directs the projector to project the content onto the physical surface within the environment, the physical surface associated with the virtual target object. Corresponding methods and systems are also disclosed.
An augmented reality (AR) output device or virtual reality (VR) output device is worn by a user and includes one or more sensors positioned to detect actions performed by a user of the immersive output device. A processor provides a data signal configured for the AR or VR output device, causing the immersive output device to provide AR output or VR output via a stereographic display device. The data signal encodes audio-video data. The processor controls a pace of scripted events defined by a narrative in the one of the AR output or the VR output, based on output from the one or more sensors indicating actions performed by a user of the AR or VR output device. The audio-video data may be packaged in a non-transitory computer-readable medium with additional content that is coordinated with the defined narrative and is configured for providing an alternative output, such as 2D video output or the stereoscopic 3D output.
A method and apparatus for detecting a main lighting direction from the input image, which corresponds to a key light. The system is operative to nm on data-parallel architectures allows for incoming light direction estimation in real-time. More particularly, the method and apparatus detect a key, or principal light direction relative to the position/orientation of an acquisition device. It method involves image analysis to find a maximum intensity value, maximal values filtering, and conversion of the input image position to a direction in space.
In some embodiments of the present disclosure, augmented reality and/or virtual reality technologies are used to present information for a vehicle to a technician. A virtual object model file that includes a context model and at least one assembly detail model is created based on a vehicle design model. A VR/AR device uses its camera to generate video of a vehicle, and superimposes a depiction of a vehicle component or assembly from the virtual object model file over the video in the location in which the vehicle component or assembly is actually located, as if the vehicle were “see-through.” The VR/AR device may then also allow the technician to select specific components of the depicted assembly in order to retrieve and display detailed information about the component.
A virtual reality system having adaptive controlling function and a controlling method thereof. The controlling method of a virtual reality system includes the following steps: A sensing signal is obtained by a head-mounted display device. A procedure of transmitting a virtual reality content to the head-mounted display device is adaptively controlled by a host according to the sensing signal.
A method, apparatus, and system provide the ability to control navigation of a three-dimensional (3D) computer aided design (CAD) model in an augmented reality space. The 3D CAD model is rendered in the augmented reality space and appears as if it is present in a physical space at true scale. A virtual camera is defined as fixed to a current pose of a user's head. A virtual line segment S is constructed coincident with a ray R from a center of projection P of the virtual camera and a center pixel of the virtual camera. A check for geometric intersections between the virtual line segment S and surfaces of scene elements is conducted. Upon intersecting with a part of the model, a gaze cursor is rendered at an intersection point C closest to the center of projection P.
Described herein are a system and techniques for performing partially or fully automatic retopology of an object model. In some embodiments, the techniques may involve categorizing and/or segmenting an object model into a number of regions. 3D data in each region may then be compared to 3D data in corresponding regions for a number of similar object models in order to identify a closest matching corresponding region. The techniques may also involve identifying a set of edges stored in relation to each closest matching corresponding region for each region of an object model. Each set of edges may be conformed to the 3D data of its corresponding region. Once conformed, the sets of edges may be compiled into a cage for the object model, from which a mesh may be generated.
An embodiment of a semiconductor package apparatus may include technology to perform depth sensor fusion to determine depth information for a surface, smooth the depth information for the surface and preserve edge information for the surface based on adaptive smoothing with self-tuning band-width estimation, iteratively remove holes from the surface based on conditional iterative manifold interpolation, reduce one or more of a file size and an on-memory storage size of data corresponding to the surface based on triangular edge contraction, and construct at least a portion of a 3D model based on data corresponding to a visible portion of the surface. Other embodiments are disclosed and claimed.
A method for the computer animation of captured images is provided. The computer animation of the captured image may be operatively rigged via touchscreen input or synchronized with video and audio input. During the rigging stage, the user may locate joints and pivot points and/or isolated body parts via a touchscreen. Animation may be based on, in part, motion capture from video input devices, and by using computer vision and machine learning to predict the location of the pivot points and associated body parts.
Systems, devices and methods for an intelligent augmented reality (IAR) platform-based communications are disclosed. During a communication, real-time audio, video and/or sensor data are captured in real-time; and scene analysis and data analytics are also performed in real-time to extract information from raw data. The extracted information can be further analyzed to provide knowledge. Real-time AR data can be generated by integrating the raw data, AR input data, information input, and knowledge input, based on one or more criteria comprising a user preference, a system setting, an integration parameter, a characteristic of an object or a scene of the raw data, an interactive user control, or a combination thereof. In some embodiments, information and knowledge can be obtained by incorporating Big Data in the analysis.
A graph processing system, method and apparatus classifies graphs based on a linearly computable set of features defined as a feature vector adapted for comparison with the feature vectors of other graphs. The features result from graph statistics (“gragnostics”) computable from the edges and vertices of a set of graphs. Graphs are classified based on a multidimensional distance of the resulting feature vectors, and similar graphs are classified according to a distance, or nearest neighbor, of the feature vector corresponding to each graph. Projection of the feature vector onto two dimensions allows visualization of the classification, as similar graphs appear as clusters or groups separated by a relatively shorter distance. Different types or classifications of graphs also appear as other, more distant, clusters. An initial training set defines the classification types, and sampled graphs are evaluated and classified based on the feature vector and nearest neighbors in the training set.
A system that displays geographic data is disclosed. During operation, the system receives a query to be processed, wherein the query is associated with a set of geographic regions. Next, the system uses a late-binding schema generated from the query to retrieve a set of data points from a set of events containing previously gathered data. Then, for each data point in a set of data points, the system identifies zero or more geographic regions in the set of geographic regions that the data point falls into. Finally, the system displays the set of geographic regions, wherein each polygon that defines a geographic region is marked to indicate a number of data points that fall into the polygon.
The provided is an image processing technology to avoid inaccuracy of inferring a position of an object due to wrong model assumption.An image processing device according to an exemplary aspect of the present invention includes: a matching unit 106 that estimates similarity of input image to particle images including areas of particles at relative positions, true positions of the particles in the particle images being given; and a calculation unit 108 that calculates positions of particles in the input image based on the similarity and the true positions.
The present invention is directed to a system and method for providing navigational directions to a user to locate a target anatomical object during a medical procedure via a medical imaging system. The method includes selecting an anatomical region surrounding the object; generating a plurality of real-time two-dimensional images of scenes from the anatomical region and providing the plurality of images to a controller; developing and training a deep learning network to automatically detect and identify the scenes from the anatomical region; automatically mapping each of the plurality of images from the anatomical region based on a relative spatial location and a relative temporal location of each of the identified scenes in the anatomical region via the deep learning network; and providing directions to the user to locate the object during the medical procedure based on the relative spatial and temporal locations of each of the identified scenes.
A search assist system performs search for a subject of search from the images picked up by the on-board cameras. The search assist system includes: a first storage configured to store characteristic information on subjects of identification detected from the images picked up by fixed cameras and information on the fixed cameras; a second storage configured to store location information on vehicles; and one or more first controllers configured to receive characteristic information on the subject of search; determine a search target area based on an installation location of a fixed camera picking up the characteristic information matching the characteristic information on the subject of search; and send, to vehicles within the search target area, search instructions to search for the subject of search by the on-board cameras; and a second controller configured to output an image including the detected characteristic information on the subject of search.
According to some aspects, methods and systems may include receiving, by a computing device, metadata identifying an event occurring in a video program, and determining an expected motion of objects in the identified event. The methods and systems may further include analyzing motion energy in the video program to identify video frames in which the event occurs, and storing information identifying the video frames in which the event occurs.
This invention provides a system and method for finding line features in an image that allows multiple lines to be efficiently and accurately identified and characterized. When lines are identified, the user can train the system to associate predetermined (e.g. text) labels with respect to such lines. These labels can be used to define neural net classifiers. The neural net operates at runtime to identify and score lines in a runtime image that are found using a line-finding process. The found lines can be displayed to the user with labels and an associated probability score map based upon the neural net results. Lines that are not labeled are generally deemed to have a low score, and are either not flagged by the interface, or identified as not relevant.
A method for identifying biomarker-positive tumor cells is disclosed. The method includes, for example, reading a first digital image and a second digital image into memory, the first and second digital image depicting the same area of a first slide; identifying a plurality of nuclei and positional information of said nuclei by analyzing the light intensities in the first digital image; identifying cell membranes which comprise the biomarker by analyzing the light intensities in the second digital image and by analyzing the positional information of the identified nuclei; and identifying biomarker-positive tumor cells in said area, wherein a biomarker-positive tumor cell is a combination of one identified nucleus and one identified cell membrane that surrounds the identified nucleus.
Method for generating a test-set for inspection of a design being printed by a printing-press, each color-unit in the printing-press prints a respective color. The design is composed of original-layers. Inspection includes determining the origin of at least one defect in the printed-design. The method includes the procedures of generating defective-layer or layers of the design, by introducing at least one selected defect to at least one selected original-layer, in a selected location or locations and combining layers using a trained-synthesis-neural-network. The layers include the defective-layer or layers and remaining ones of the original-layers. The trained-synthesis-neural-network provides a plurality of features respective of each pixel. The method also includes the procedure of generating the test-set from the output of the synthesis-neural-network. The test-set includes at least one synthesized-test-image. The synthesized-test-image includes at least one synthesized-defect at the selected location. The test-set is employed to determine the origin of the defect.
A memory stores image data generated by sensors included in an imager and containing a component data piece for each of color components that has undergone A/D conversion by an A/D converter. A width detector detects, based on the image data having undergone image processing by an image processor, the width along the main scanning direction of a duplicate area in which pieces of image data generated by adjoining sensors overlap each other. A displacement detector detects, based on the width of the duplicate area along the main scanning direction, a displacement of a scan target object for each of optical systems included in the imager. A first blur corrector performs blur correction on the component data piece using a point spread function for each of the color components that is dependent on a displacement of the scan target object. An adjuster adjusts, based on a transfer magnification dependent on a displacement of the scan target object, the size of an image for each of the color components indicated by the component data piece. A combiner combines the images by superimposing portions of the component data pieces.
An information processing apparatus according to the present invention, includes: a first acquiring unit configured to acquire surface change information on magnitude of change of a projection surface onto which an image is projected; and a determining unit configured to determine, based on the surface change information, frame rate control information on a frame rate of image processing to allow the image to follow the projection surface.
A method includes manipulating segmented structure of interest, which is segmented from first reconstructed image data at a reference motion phase of interest, that is registered to second reconstructed image data at one or more other motion phases. The method further includes updating initial motion vector fields corresponding to the registration of the segmented structure of interest to the second reconstructed image data based on the manipulation. The method further includes reconstructing the projection data with a motion compensated reconstruction algorithm employing the updated motion vector fields.
Systems and methods are provided to guide an emergency dispatcher in responding to emergency calls where the incident location is not known. The systems and methods can include a locator diagnostic tool configured to facilitate thorough and consistent information gathering for calls where the incident location is not known. The locator diagnostic tool may traverse a logical tree configured to gather information that can aid in identifying the incident location and/or provide instructions to the caller that may allow the incident location to be identified. For example, the locator diagnostic tool may aid callers in locating devices designed to transmit their location. The locator diagnostic tool may traverse different logical paths depending on if the caller can speak freely or not, depending on if the caller or a third party is missing, and/or depending on the type of caller location (e.g., inside, outside, or underground).
A method and a system for providing a negotiation platform in the event that a listing fails by becoming inactive without the offering being sold are provided. For example, a negotiation eligibility detector may detect a failed listing of an offering. The listing may be associated with a first user and a first offer. A potential buyer detector may identify at least one potential buyer based on a user action associated with the failed listing. A negotiation manager may be in communication with the negotiation eligibility detector and the potential buyer detector. In response to the detecting of the failed listing and the identifying of the potential buyers, the negotiation manager may transmit a request to the at least one potential buyer for a second offer associated with the failed listing.
Systems and methods are provided for verifying and/or confirming merchant data for multiple different transactions. One method generally includes accessing merchant data for a merchant where the merchant data includes a master merchant identifier for the merchant, and querying, by a computing device, multiple users as to which of a list of merchant data entries, for multiple different transactions and including different merchant identifiers, corresponds to the master merchant identifier for the merchant. The users are associated with a location within a predefined distance of the confirmed merchant and/or have performed one or more purchase transactions at the merchant. The method also generally includes receiving, at the computing device, a response from at least one of the users, in which the at least one of the users selects a data entry from the list, and determining whether to proceed in querying additional users.
A method, medium, and apparatus for allowing evaluation of property, such as damaged property, remotely and efficiently. A mobile computing device at the location of the property may be used to transmit video of the property to an adjuster, and to receive video and audio communications from the adjuster. The adjuster may be selected from a queue based on time waiting in the queue and/or a number of other statistics and attributes of the adjuster. The adjuster may converse with an owner of the property and capture video of the property in order to make an appraisal or determine the infeasibility of remote appraisal and the need to instruct another adjuster to perform a physical inspection.
Disclosed embodiments provide systems and methods related to collecting return items using an automated kiosk based on a real time risk decision. The automated kiosk captures return item information representing a return item and transmits the return item information and a request for return risk level relating to the return item to a server operable to execute a machine learning model trained on historical information to determine the risk level. The server determines the risk level based on the received return by using the machine learning model and transmits the determined risk level to the kiosk in real-time. Based on the determined risk level and a return amount associated with the return item, the server may also process a refund in real-time.
A method for interfacing with a financial institution using a computer interface is disclosed for on-line or E-Lending. A customer selects a lending product on the website of a financial institution. The financial institution receives information to authenticate the customer, and receives additional information related to the financial history and lending needs from the customer. The terms and conditions related to the lending product are presented to the customer and an authorization to an application is received from the customer. A risk analysis is performed using information received from the customer and the application of the loan is subject to approval based at least in part on the risk analysis. The third set of information related to insurance, disclosures, etc is received from the customer and a fourth set of information related to the closing information is provided back to the customer. The loan may be further closed on-line or with an attorney or agent.
Provided herein are systems, methods and computer readable media for forecasting demand. An example method comprises generating a virtual offer for one or more combinations of a category or sub-category, location, and price range, accessing consumer data comprising one or more users and user data related to each of the one or more users, calculating a probability that a particular user would buy a particular offer in a particular time frame for at least a portion of the plurality of users and for each of the virtual offers, and determining an estimated number of units of to be sold for at least a portion of the one or more virtual offers as a function of at least the probability associated with each of the one or more virtual offers.
A system and method of zone tracking for delivery of media to customers within a store is disclosed. Zone tracking enables targeting of media to at least one electronic device both in the presence of as well as in the absence of customer triggers by monitoring the physical location of the electronic device associated with the customer in the store. The zone tracking system and method preferably use a combination of at least one location-tracking server and at least one access point to track a customer's present location within a store as well as items in the vicinity of the customer.
A first set of electronic information is logged to a remotely located data store, including a user identifier, primary content, secondary content, and user interaction with the primary content and the secondary content. A second set of electronic information is received from a data source other than the user device, the second set of electronic information being related to the same user identifier as the user identifier of the first set of electronic information. Behavioral data is created for the user identifier based on at least the logged first set of electronic information and the second set of electronic information. A subsequently displayed container is controlled or modified based on the behavioral data.
Provided is an omni-channel marketing curation system based on big data including a data collecting unit configured to collect behavior log data of a customer in an online store and behavior log data of the customer who visits an offline store; a big data storing unit configured to process, in real time, the log data collected in the data collecting unit; a log verbalization converting unit configured to analyze the customer's online/offline behavior log data, convert the analyzed result into one of a plurality of pre-defined verbal expressions, which indicate degrees of customer's reactions to a product, to store the converted result in the big data storing unit; a first attribute setting unit configured to receive customer's attribute information from a system user so as to create a profile for a persona according to the attribute; a persona generating unit configured to group, into one persona, customers corresponding to the attribute information received by the first attribute setting unit, generate one or more pieces of visualization information in correspondence to verbal expressions, and generate trajectory information through which how the visualization information moves to purchase the product; and a data visualization providing unit configured to consecutively play visualization information and trajectory information.
Embodiments are directed to a computer implemented business campaign development system. The system includes an electronic tool configured to hold data of a user, and an analyzer circuit configured to derive a cognitive trait of the user based at least in part on the data of the user. The system further includes a targeted business strategy development system configured to derive a targeted business strategy based at least in part on the cognitive trait of the user.
An apparatus and method for predicting a brand name of a product are disclosed herein. A product identification number for the product is converted into a normalized global trade item number (GTIN). For each of a plurality of GTIN prefixes corresponding to the normalized GTIN, brand names and counts of each of the brand names using product information stored in a product catalog are identified. A probability distribution of the brand names is determined in accordance with the brand names and the counts of the brand names for the plurality of the GTIN prefixes. A predicted brand name for the product is identified from among the brand names for the plurality of the GTIN prefixes, the predicted brand name having a highest probability score in the probability distribution of the brand names.
Systems, methods, and media for managing web content. Exemplary methods may include the steps of providing a web content management application via a web site, generating a web marketing campaign from at least a portion of a global marketing framework via a web server, gathering via the web server marketing data from at least one of the web server associated with the web marketing campaign and consumer devices accessing the web marketing campaign, the marketing data including information indicative of interests of consumers, storing the marketing data in a database, associating consumers together according to at least one common interest to create one or more consumer groups, and providing the one or more consumer groups to at least one marketing content author.
An access management system includes a database configured to store access data including account identifiers and accessor identifiers, wherein the access data indicates particular accounts that have been accessed by particular accessors. The access management system also includes a computer system that receives a reservation request comprising an account identifier and an accessor identifier and determines whether the account identifier is included in the database. The computer system also determines, in response to the account identifier being present in the database, whether the access data correlates the account identifier to the accessor and authorizes the reservation of the one or more resources in the account by the accessor in response to the access data correlating the account identifier to the accessor.
Embodiments of the present invention are directed to a “one-click payment” scheme for streamlining customers' online checkout experiences. According to one particular embodiment, a customer can use a computing device to be authenticated and receive a unique, one-time token to make a one-click payment during an online checkout process. The one-time token may be encrypted and directly associated with a payment account which the customer is authorized to access. The online merchant may forward a transaction request including the one-time token and purchase amount to an authorization server which would verify the token and charge the corresponding payment account.
Methods, secure elements, validation entities, and computer program products for effecting secure communication of payment information to merchants for Internet-based purchases. Payment information for a user's real payment information is installed in a secure element of a computer, the payment information may comprise a pseudo PAN number for the portable consumer device provided by a validation entity. The secure element is shielded from the computer's operating system to thwart hacker attacks. The user accesses the secure element to make a purchase. In response, the secure element contacts the validation entity with the pseudo account number, and in response obtains dynamic payment information that the secure element can used to effect the payment. The dynamic payment information comprises an account number that is different from the pseudo PAN, and which has at least one difference which respect to the user's real payment information.
The creation of a private sub-blockchain from a main blockchain is disclosed including receiving a request including a trust requirement and an agility requirement, receiving monitoring data from at least one of a plurality of validator nodes of the main blockchain, the monitoring data generated by monitoring the execution of transactions and the exchange of consensus messages by one or more of the plurality of validator nodes, determining a minimum number of validator nodes required to meet the trust requirement, identifying a subset of the plurality of validator nodes of the main blockchain that meets the agility requirement based on the received monitoring data, the subset containing at least the determined minimum number of validator nodes required to meet the trust requirement, and creating a private sub-blockchain of the main blockchain, the private sub-blockchain including the identified subset of the plurality of validator nodes of the main blockchain.
A computing device for risk-based analysis of a payment card transaction is provided herein. The computing device includes a processor communicatively coupled to a memory. The computing device is programmed to receive a request for authentication of the payment card transaction. The payment card transaction includes a suspect consumer presenting a payment card from a digital wallet of a privileged cardholder. The computing device is also programmed to identify fraud feature data from the digital wallet. The computing device is further programmed to compute a fraud score for the payment card transaction based at least in part on the fraud feature data. The computing device is still further programmed to provide the fraud score for use during authentication of the suspect consumer.
A device may perform a first authentication operation, associated with a contactless media device, using a first key. The first key may permit a security mode of the contactless media device to be modified. The device may cause the contactless media device to set the security mode to a first security mode that causes the contactless media device to secure at least one transmission from the contactless media device. The device may perform a second authentication operation, associated with the contactless media device, using a second key that permits information to be read from or written to the contactless media device. The device may read first secured information from or write second secured information to the contactless media device. The first secured information or the second secured information may be secured based on the security mode of the contactless media device being set to the first security mode.
A method of enabling a payment between a payor using a mobile device and one of a plurality of payees using respective payee devices, comprising: monitoring a first communication channel for receipt of a broadcast of a first identifier corresponding to one of the plurality of payee devices; upon receipt of the first identifier, generating an identifier notification comprising the first identifier and a second identifier corresponding to the mobile device, and transmitting the identifier notification from the mobile device to a payment processor over a second communication channel; in response to receipt of the identifier notification transmitted from the mobile device at the payment processor, associating the second identifier of the identifier notification with the first identifier of the identifier notification in a payment processor memory of the payment processor; generating a payment request comprising the second identifier, and transmitting the payment request from the mobile device to the payment processor; in response to receipt of the payment request transmitted from the mobile device, generating a payment notification in respect of the payment re quest, and transmitting the payment notification from the payment processor to the payee device corresponding to the first identifier associated with the second identifier.
An email payment gateway configured to enable users to receive @PAY offers using print media quick response (QR) codes. A consumer views an advertisement or product having packing with a QR code and scans the QR code. Scanning the QR code generates an email addressed to the email payment gateway requesting information on the product, which is sent to the email payment gateway. The email payment gateway receives the email and responds to the consumer with an email that includes information on the products in the advertisement. Included in the email from the email payment gateway is a button enabling the recipient to purchase the relevant item. The button preferably includes a mail-to hyperlink as that generates an outgoing email reply requesting to purchase the product.
A sales data processing apparatus includes the following. A narrow area communication unit communicates with a predetermined terminal apparatus by wireless communication limited to a narrow area. A wide area communication unit communicates with the terminal apparatus by wireless communication throughout a wide area. A mode switching unit switches between a first mode in which wireless communication with the terminal apparatus using the narrow area communication unit is allowed but the wireless communication using the wide area communication unit is prohibited, and a second mode in which at least wireless communication using the wide area communication unit is allowed. A report mode which outputs sales data calculating predetermined transaction data is assigned to the first mode.
Methods, computer-implemented systems, and apparatus provide for a DRM Migrator that extracts embedded first license information that enables licensed access to content according to a first licensing system. The DRM Migrator sends the first license information to a server compatible with a second licensing system. After sending the first license information to the server, the DRM Migrator receives second license information that enables an end user to create a request for a license that provides access to the content according to the second licensing system. Another embodiment of the DRM Migrator also receives the first license information from a source and generates the second license information. After generating the second license information, the DRM Migrator sends the second license information to the source to enable creation of a request for a license that provides access to the content according to the second licensing system.
A dual mode payment interface device has a touch display and alternatively operates in a first mode and a second mode. The first mode provides access to a merchant system interface (MSI) on the touch display and provides access to a customer system interface (CSI) on the touch display. The second mode provides access to a CSI on the touch display and does not provide access to the MSI on the touch display. The system also includes a merchant display device having a second touch display. The merchant display device provides access to the MSI on the second touch display. The system also includes a wire that provides a communicative connection between the dual mode payment interface device and the merchant display device. The second mode is enabled by the communicative connection.
A financial management network is disclosed for optimizing interest return and/or deposit insurance coverage among a plurality of online accounts that may include one or more savings accounts and a checking account, by automatically allocating and transferring funds among the accounts without intervention of the account holder, in accordance with constraints that may be set by the financial management network, account holder, the account holder's financial advisor, and/or imposed by the associate financial institutions holding the accounts.
Systems and methods for a financial transaction system are provided. Additionally, computer-implemented methods for providing a customer with a method of making a payment to a third party. These methods may include generating a token associated with financial transaction information and representing a single transaction to the third party on behalf of the customer, where the financial transaction information may include a payment amount, transmitting the token based on the financial transaction information to a system, and receiving the token from the third party at the remote dispensing machine.
Examples of the disclosure provide a system and method for obtaining one or more current candidate resumes and one or more past candidate resumes associated with a role and analyzing full text of the obtained resumes to identify one or more items. Weighted values are determined for the identified items using a dimension reduction technique, and a probability score is calculated for each of the obtained current candidate resumes based on selection data associated with the obtained past candidate resumes. A keyword score is calculated for each of the obtained current candidate resumes based on a presence of one or more keywords associated with the role in the obtained current candidate resumes. A final candidate score is generated for each of the obtained current candidate resumes based on the keyword score and the calculated probability score, and the generated final candidate scores are output in association with the obtained current candidate resumes to a user interface.
Novel distractorless authorship verification technology optionally combines with novel algorithms to solve authorship attribution as to an open set of candidates—such as without limitation by analyzing the voting of “mixture of experts” and outputting the result to a user using the following: if z (z=pi−pj√pi+pj−(pi−pj)2/n) is larger than a first predetermined threshold then author j cannot be the correct author; or if z (z=pi−pj√pi+pj−(pi−pj)2/n) is smaller than a second predetermined threshold then author i cannot be the correct author; or if no author garners significantly more votes than all other contenders then none of the named authors is the author of a document in question—in a number of novel applications. Personality profiling and authorship attribution may also be used to verify user identity to a computer.
Methods and systems for pharmacy modeling are described. The risk adjusted pharmacy predictive model is created from member data, claims data, and population data. This model can be used to compare the actual pharmacy performance to an expected actual pharmacy performance value, which can be used to identify pharmacies at risk or not performing to an acceptable level. The model can be used for adherence and generic drug utilization ratings of pharmacies. The pharmacy can be judged on a therapy class by therapy class basis with factors that reflect the demographic, socio-economic, location, benefits attributes, etc. that actually affect the performance of the pharmacy and may assist in determining the quality of care by a pharmacy.
A collaborative design system, method, and apparatus are disclosed. An example method includes receiving request messages from a first client device and a second client device requesting a workflow project for design collaboration, creating a typescript version of the workflow project from an executable version of the workflow project, and transmitting a copy of the typescript version of the workflow project to each of the client devices. The method further includes receiving from the first client device, an instruction that is indicative of a modification to the copy of the typescript version of the workflow project at the first client device and transmitting the instruction to the second client device causing the second client device to modify the copy of the typescript version of the workflow project at the second client device. Additionally, the method includes modifying the executable version of the workflow project based on the instruction.
In a method for estimating a severity of a current security incident reported by a customer for the customer's computer system, a processor receives from one or more administrators for a plurality of prior security incidents reported by the customer, identifications of a respective plurality of actual severities for the plurality of prior security incidents. The processor estimates, based in part on the plurality of identified actual severities of the prior security incidents, a severity of the current security incident. The processor reports the estimated severity for the current security incident.
An apparatus for performing quantum computing includes multiple qubits, each of at least a subset of the qubits comprising a loop formed of a Dirac or Weyl semimetal and having at least two stable quantum states. The apparatus further includes at least one terahertz cavity coupled with the qubits, the terahertz cavity being configured to detect the quantum states of the qubits. Each of at least the subset of qubits is configured to receive a circularly polarized radiation source. The radiation source is adapted to excite a chiral current in each of at least the subset of qubits, the quantum states of the plurality of qubits being a function of the chiral current.
A quantum computing device includes multiple co-planar waveguide flux qubits, at least one coupler element arranged such that each co-planar waveguide flux qubit, of the multiple co-planar waveguide flux qubits, is operatively couplable to each other co-planar waveguide flux qubit, of the multiple co-planar waveguide flux qubits, of the quantum computing device, and a tuning quantum device, in which the tuning quantum device is in electrical contact with a first co-planar waveguide flux qubit of the plurality of co-planar waveguide flux qubits and with a second co-planar waveguide flux qubit of the plurality of co-planar waveguide flux qubits.
A system and method of navigating in areas. A machine learning model is trained in multiple levels with data concerning basic interpretation of sensors and with analysis of the layout of areas. The model is downloaded to a second processor which may further train the model with sensor data gathered after the download. Additional sensor data along with data from a server or other sources may be used as an input to the model and the second or another processor evaluates the model with the inputs to create outputs which determine the state of compliance. Specific applications include movement around in areas of interest. A vehicle which is controlled by a driver or by data from the machine loading model and it's analysis may be included. The model is used to calculate a path which may be displayed in visual, auditory or tactile modes.
Systems and methods for a computer implemented image reconstruction system that includes an input interface to receive measurements of a scene. A memory to store a sparsity enforcing neural network (SENN) formed by layers of nodes propagating messages through the layers. Wherein at least one node of the SENN modifies an incoming message with a non-linear function to produce an outgoing message and propagates the outgoing message to another node of the SENN. Wherein the non-linear function is a dual-projection function that limits the incoming message if the incoming message exceeds a threshold. Such that, the SENN is trained to reconstruct an image of the scene from the measurements of the scene. A processor to process the measurements with the SENN to reconstruct the image of the scene. Finally, an output interface to render the reconstructed image of the scene.
Disclosed are systems and methods for training and executing a neural network for collaborative monitoring of resource usage metrics. For example, a method may include receiving user data sets, grouping the user data sets into one or more clusters of user data sets, grouping each of the one or more clusters into a plurality of subclusters, for each of the plurality of subclusters, training the neural network to associate the subcluster with one or more sequential patterns found within the subcluster, grouping the plurality of user data sets into a plurality of teams, receiving a first series of transactions of a first user, inputting the first series of transactions into the trained neural network, classifying, using the trained neural network, the first user into a subcluster among the plurality of subclusters, generating a metric associated with the first series of transactions, generating a recommendation to the first user.
According to one embodiment, an image forming apparatus includes a printer configured to form an image on a sheet at a carrying speed, a first reading/writing unit configured read tag information stored in a wireless tag disposed on the sheet and to write tag information to the wireless tag, a reading/writing control unit configured to control the first reading/writing unit to read tag information stored in the wireless tag and to write tag information to the wireless tag, and a printer control unit configured to control the carrying speed of the sheet according to a total number of wireless tags disposed on the sheet.
A method of detecting a target includes generating an image pyramid based on an image on which a detection is to be performed; classifying candidate areas in the image pyramid using a cascade neural network; and determining a target area corresponding to a target included in the image based on the plurality of candidate areas, wherein the cascade neural network includes a plurality of neural networks, and at least one neural network among the neural networks includes parallel sub-neural networks.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for shape detection are disclosed. In one aspect, a method includes the actions of generating a shape model that includes a predetermined shape with a predetermined scale and predetermined orientation. The actions further include receiving an image. The actions further include identifying edges that are parallel to the side of the shape model and that are a predetermined distance from the side of the shape model. The actions further include selecting a plurality of edges that likely correspond to edges of a shape that is similar to the shape model. The actions further include determining a fit score between the plurality of edges and each shape of a plurality of shapes that are similar to the shape model. The actions further include identifying a particular shape in the image that most closely fits the shape model.
An image correspondence determining method is provided that includes the steps outlined below. A first image and a second image are concatenated to generate a concatenated image having global information. Features are extracted from the concatenated image to generate a plurality of feature maps and the feature maps are divided into first feature maps and second feature maps. First image patches are extracted from the first feature maps corresponding to a first region and second image patches are extracted from the second feature maps corresponding to a second region. The first and the second image patches are concatenated to generate concatenated image patches. A similarity metric is calculated according to the concatenated image patches to determine a similarity between the first region and the second region.
Methods and apparatus for tracking and discerning objects using their saliency. In one embodiment of the present disclosure, the tracking of objects is based on a combination of object saliency and additional sources of signal about object identity. Under certain simplifying assumptions, the present disclosure allows for robust tracking of simple objects with limited processing resources. In one or more variants, efficient implementation of the methods described allow sensors (e.g., cameras) to be used on board a robot (or autonomous vehicle) on a mobile determining platform, such as to capture images to determine the presence and/or identity of salient objects. Such determination of salient objects allow for e.g., adjustments to vehicle or other moving object trajectory.
A character recognition device includes an acquisition means configured to acquire an image containing a character region, a first recognition means configured to recognize a character from the character region by a first recognition method, a setting means configured to set reference lines along an alignment direction of the characters and passing through a specified position in each character, a second recognition means configured to recognize a character by a second recognition method, the second recognition method being a method that recognizes a character from an image within a recognition window by scanning in a recognition target region in an image while changing a size of the recognition window, and configured to set a position or a height in a vertical direction of the recognition window based on the reference lines, and an output means configured to output a word composed of characters recognized by the second recognition means.
Advanced driver assistance systems can be designed to recognize and to classify traffic signs under real time constraints, and under a wide variety of visual conditions. This disclosure provides techniques that employ binary masks extracted by color space segmentation, with a different binary mask generated for each sign shape. Temporal tracking is employed to add robustness to the detection system. The system is generic, and is trainable to the traffic signs used in various countries.
A system and method for large-scale lane marking detection using multimodal sensor data are disclosed. A particular embodiment includes: receiving image data from an image generating device mounted on a vehicle; receiving point cloud data from a distance and intensity measuring device mounted on the vehicle; fusing the image data and the point cloud data to produce a set of lane marking points in three-dimensional (3D) space that correlate to the image data and the point cloud data; and generating a lane marking map from the set of lane marking points.
A system, computer-readable medium, and method for localization and mapping for an autonomous vehicle are provided. The system may obtain an image. The system may assign labels to one or more objects of the image. The system may also obtain a point cloud. The system may determine one or more object clusters of the point cloud and associate the labels assigned to the one or more objects of the image with points of the object clusters of the point cloud. The system may further identify three-dimensional (3D) objects of the point cloud based on the labels associated with the points of the object clusters. In some aspects, the system may remove dynamic traffic participants from the point cloud based on the identified 3D objects and/or perform a simultaneous localization and mapping operation on the point cloud after removing the dynamic traffic participants.
The disclosure describes a sensor system that provides end users with intelligent sensing capabilities, and embodies both crowd sourcing and machine learning together. Further, a sporadic crowd assessment is used to ensure continued sensor accuracy when the system is relying on machine learning analysis. This sensor approach requires minimal and non-permanent sensor installation by utilizing any device with a camera as a sensor host, and provides human-centered and actionable sensor output.
Systems, methods, and non-transitory computer-readable media can determine a video being posted through a social networking system; one or more portions of the video to be compressed are determined; and the one or more portions of the video are compressed, wherein, upon being compressed, at least one frame corresponding to at least one of the portions is deleted.
A method, system and computer program product for classifying an image or video. An image or video to be classified is received. Scene statistics (statistical model of pictures, images or videos representative of pictures, images or videos, respectively, that are captured of the physical world) of the image or video are captured. A model (a statistical model that describes a set of probability distributions) of the image or video is then created using the captured scene statistics. A comparison between the model of the image or video with two other models of images or videos is performed, such as a model of visible light images or videos and a model of infrared images or videos. The received image or video is then classified (e.g., classified as corresponding to a visible light image) based on the comparison.
A wearable imaging apparatus is provided for capturing and processing images from an environment of a user. In one implementation, the wearable apparatus may be configured with a memory for storing privacy mode triggers and associated automatically variable privacy mode settings, and at least one processing device. The processing device may analyze the images captured by the wearable apparatus, and recognize the presence of at least one of the privacy mode triggers within the images. After recognizing the at least one trigger, the processing device may cause one or more adjustments to the wearable apparatus based on the privacy mode settings associated with the at least one trigger.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training an object embedding system. In one aspect, a method comprises providing selected images as input to the object embedding system and generating corresponding embeddings, wherein the object embedding system comprises a thumbnailing neural network and an embedding neural network. The method further comprises backpropagating gradients based on a loss function to reduce the distance between embeddings for same instances of objects, and to increase the distance between embeddings for different instances of objects.
A fingerprint module and an electronic apparatus are described. The fingerprint module may include: an encapsulation layer and a decoration component. The encapsulation layer may be configured to encapsulate a fingerprint identifying assembly and include a rear wall having a first mating portion. The decoration component may define an embedded groove and include a second mating portion in the embedded groove. The encapsulation layer may be embedded in the embedded groove, and the first mating portion may be embedded to the second mating portion.
The present disclosure relates to a flat panel display embedding an optical imaging sensor such as a fingerprint image sensor. The present disclosure provides a flat panel display embedding an image sensor comprising: a display panel including a display area and a non-display area; and a directional optical unit having a length and a width corresponding to the display panel and a thickness, and attached on a top surface of the display panel, wherein the directional optical unit includes: a first cover plate and a second cover plate having a size corresponding to the length and the width and joining each other by a first low refractive layer between the first cover plate and the second cover plate; a light radiating film corresponding to the display area under the second cover plate; a light incident film disposed outside of the display area at one lateral side of the light radiating film, under the second cover plate; a second low refractive layer disposed under the light radiating film and the light incident film, and attached on the top surface of the display panel; and a light source disposed at the lateral side of the display panel as facing with the light incident film.
Systems, methods, and computer program products are disclosed to localize and/or image a dense array of particles. In some embodiments, a plurality of particles may be imaged using an imaging device. A plurality of point spread function dictionary coefficients of the image may be estimated using a point spread function dictionary; where the point spread function dictionary can include a plurality of spread function responses corresponding to different particle positions. From the point spread function dictionary coefficients the number of particles in the image can be determined. Moreover location of each particle in the image can be determined from the point spread function dictionary coefficients.
An agricultural exchange system includes a smart chute for isolating a live animal. The live animal can be weighed, photographed, and identified while in the smart chute. A subscriber unit receives measured data and transmits the data to a centralized server. The centralized server stores measured data and identification data as part of a product data card for the live animal. The centralized server provides the data as needed to potential buyers directly or through a service provider. Potential buyers may access the data in real time to obtain detailed information on a live animal prior to purchase.
The present invention relates to a microwave sensing device that uses antennas in the form of a 2×1 array with two radiators driven out of phase via a 180 degree power splitter for measuring a radio-frequency signal propagating through a mammalian specimen to obtain an integral estimate of bone density.
According to one embodiment, a merchandise reading apparatus is equipped with a storage chamber formed of a radio wave shielding member and a reading apparatus which reads information of a radio tag from merchandise attached with the radio tag and stored in the storage chamber, and at least a part of the storage chamber is formed of a light transmitting member.
An RFID tag is provided with an RFID chip and an antenna and interactive switch electrically coupled to the RFID chip. When a user physically interacts with the switch (such as by pressing the switch with a finger), the antenna transmits an input signal to an RFID reader of an RFID-based control system. The RFID reader, in turn, transmits a control signal to an electronic device for controlling the device. The RFID tag may be incorporated into any of a number of devices, such as a keyboard or article of clothing, and can function to operate a variety of electronic devices, including audio-visual devices and gaming systems.
A computer system may receive a first set of bundled information. The computer system may have a processor and a memory storing one or more natural language processing modules. The computer system, using a natural language processing module, may ingest the first set of bundled information. The computer system may generate a first set and a second set of categories. The computer system may generate one or more models. The computer system may receive a set of input characteristics. The computer system may select a model based on the input characteristics. The computer system may rank one or more correlations using the selected model. The computer system may output a display of the one or more correlations on a graphical user interface.
The present disclosure generally relates to systems and processes for morpheme-based word prediction. An example method includes receiving a current word; determining a context of the current word based on the current word and a context of a previous word; determining, using a morpheme-based language model, a likelihood of a prefix based on the context of the current word; determining, using the morpheme-based language model, a likelihood of a stem based on the context of the current word; determining, using the morpheme-based language model, a likelihood of a suffix based on the context of the current word; determining a next word based on the likelihood of the prefix, the likelihood of the stem, and the likelihood of the suffix; and providing an output including the next word.
A method for generating an electronic document template includes obtaining an electronic document template for generating an electronic document, and inserting a start section identifier into the obtained template, wherein the start section identifier is inserted to create a defined section. The start section identifier associates the defined section with a contextual relationship in an entity-relationship model, and the contextual relationship identifies one or more entities associated with the contextual relationship. A system may be arranged to perform the method steps.
An eForm system includes defining an eForm, defining document metadata associated with the eForm, and defining supplemental metadata associated with the eForm. In response to a document generation request, the eForm definition, the associated document metadata, and the associated supplemental metadata are assembled. In response to a document display request, an eForm display is generated based on the eForm definition, the associated document metadata, and the associated supplemental metadata.
An information processing apparatus capable of displaying an image on a predetermined display unit, includes: a reception unit that receives a written input on an image according to an operation of a user in a state where the image is displayed on the display unit; a generation unit that generates a written object according to the written input received by the reception unit; a reference detection unit that detects a reference direction of the image displayed on the display unit; a correction unit that corrects the written object on the basis of the reference direction detected by the reference detection unit; and a display control unit that displays the written object generated by the generation unit.
One aspect is a method that includes identifying a substantially uniform distribution of signal vias for a multi-layer circuit board based on a design file defining a layout. A signal via pitch is determined as a center-to-center distance between a neighboring pair of signal vias. The signal via pitch is compared to a target minimum drilling distance. A ground via is identified proximate the neighboring pair of the signal vias. Based determining that the signal via pitch of the neighboring pair is less than the target minimum drilling distance, at least one of the signal vias is positioned closer to the ground via such that after the positioning, the signal via pitch of the neighboring pair meets or exceeds the target minimum drilling distance. The design file is modified to include the positioning of the signal vias and is transmitted over a network to support circuit board manufacturing operations.
Systems, methods and computer program products for creating 3D representations of bodies are disclosed. The systems, methods and computer program products include the construction of FE meshes representing complex geometries. The complex geometries may be artificially or naturally formed or designed geometries. The techniques reduce the number of elements as much as possible to save on computer run time while maintaining computational accuracy.
Embodiments include a system for release cycle optimization; the system includes a processor configured to perform a method. The method includes accessing, by a processor, historical data relating to a plurality of software version each having a plurality of attributes; selecting a subset of attributes from the plurality of attributes; receiving a set of data values for each of the subset of attributes from the plurality of attributes; performing one or more simulations of a software development cycle utilizing the set of data values; and obtaining a set of results from the one or more simulations comprising a plurality of predicted field defects values corresponding to each of the set of data values.
A computing device for receiving a design problem statement describing a design problem in a controlled natural language (CNL) that defines permitted lexicons and syntax structures. The design problem statement is processed using the CNL lexicons and syntax structures to produce a job description executable by a design application for generating a design solution for the design problem statement. An improved CNL user interface that assists users to produce valid design problem statements that are CNL-compliant. The CNL user interface receives user-selectable terms that are compliant with the CNL lexicons and generates candidate problem statements that are compliant with CNL syntax structures and receives a selection of a candidate problem statement that is added to the design problem statement. A graphical user interface may display a graphical representation of a design problem statement that can be directly modified. A dialogue-based design process to explore possible design intentions and design solutions.
A mismatch between model-based classifications produced by a first version of a machine learning threat discernment model and a second version of a machine learning threat discernment model for a file is detected. The mismatch is analyzed to determine appropriate handling for the file, and taking an action based on the analyzing. The analyzing includes comparing a human-generated classification status for a file, a first model version status that reflects classification by the first version of the machine learning threat discernment model, and a second model version status that reflects classification by the second version of the machine learning threat discernment model. The analyzing can also include allowing the human-generated classification status to dominate when it is available.
Access to devices can be controlled dynamically. A device control driver can function as an upper filter driver so that it can intercept I/O requests that target a particular device. The device control driver can be configured to communicate with a device control server to dynamically determine whether the current user is allowed to access the particular device. The device control server can employ policy or administrator input to determine whether access should be allowed and can then notify the device control driver accordingly. When access is granted, the device control driver can pass I/O requests down the device driver stack. Otherwise, the device control driver can block the I/O requests. Also, when access is granted, the device control server can specify a permission expiration time after which the device control driver should again resume blocking I/O requests.
The present invention provides an information display device which may simply display a defined information to improve the convenience. The information display device is able to read the member card having the member identification code, and access the member management server storing the plurality of information associated with the user, and display the plurality of information associated with the user. In the member management server, the plurality of information associated with the user is distinguished to be information not requiring to be authenticated and information requiring to be authenticated respectively and then is stored. The information display device acquires the information not requiring to be authenticated from the member management server according to the member identification code under the condition of reading the member card, and directly display the acquired information not requiring to be authenticated without being authenticated by the user.
Embodiments of the present invention provide an authenticating service of a chip having an intrinsic identifier (ID). In a typical embodiment, an authenticating device is provided that includes an identification (ID) engine, a self-test engine, and an intrinsic component. The intrinsic component is associated with a chip and includes an intrinsic feature. The self-test engine retrieves the intrinsic feature and communicates it to the identification engine. The identification engine receives the intrinsic feature, generates a first authentication value using the intrinsic feature, and stores the authentication value in memory. The self-test engine generates a second authentication value using an authentication challenge. The identification engine includes a compare circuitry that compares the first authentication value and the second authentication value and generates an authentication output value based on the results of the compare of the two values.
Systems and methods for monetizing the reproduction of digital media content for the rights-holders of the digital media content. Embodiments of the present disclosure relate to determining whether a user of a media content item has a license to reproduce the media content item. In one embodiment, the media content item may be reproduced when the user is licensed. The user is prompted to select to acquire a license to reproduce the media content item or to decline the license to reproduce the media content item when the user is not licensed. Further embodiments determine whether a user may receive a license when the user wishes to acquire a license. In an embodiment, the user is declined a license when not approved for the license.
A vending refrigerator for dispensing pharmaceutical products, such as vials, bottles, syringes, and the like, at a point of distribution, e.g., a doctor's office or pharmacy. The vending refrigerator comprises a first product dispenser for one type of packaging and a second product dispenser for a second type of packaging. The product can be removed from a dispenser drawer but cannot be placed back into the dispenser through the drawer. The product dispensers are filled through openings that are not accessible during normal operations, but that are accessible during refilling procedures. The refrigerator may include a shelf where products that are mistakenly pulled from the product dispenser or that contain multiple doses of their contents can be placed for temporary storage. In some embodiments, the refrigerator comprises a chilled compartment and a freezer compartment.
The disclosed technology concerns methods, apparatus, and systems for designing and generating networks-on-chip (“NoCs”), as well as to hardware architectures for implementing such NoCs. The disclosed NoCs can be used, for instance, to interconnect cores of a chip multiprocessor (aka a “multi-core processor”). In one example implementation, a wire-based routerless NoC design is disclosed that uses deterministically specified wire loops to connect the cores of the chip multiprocessor. The disclosed technology also comprises network interface architectures for use in an NoC. For example, a core can be equipped with a low-area-cost interface that is deadlock-free, uses buffering sharing, and provides low latency.
The present invention provides a system and computer implemented method for generating a layout of a cell defining a circuit component, the layout providing a layout pattern for a target process technology. In accordance with the method, a process technology independent layout representation associated with the circuit component is input, the process technology independent layout representation being defined within a grid array providing a plurality of grid locations. A mapping database is provided having a priority ordered list of mapping entries, each mapping entry storing a process technology independent layout section and an associated layout pattern section for the target process technology. For selected grid locations within the grid array, a lookup operation is performed in the mapping database to determine a matching mapping entry, the matching mapping entry being a highest priority mapping entry within the priority ordered list whose process technology independent layout section matches a portion of the process technology independent layout representation at that selected grid location. The layout of the cell is then generated by incorporating, at each of the selected grid locations, the layout pattern section for the target process technology stored in the matching mapping entry. This provides an automated mechanism for generating cells whose layouts conform to a target process technology.
A method, computer program product, and computing system for receiving a presentation file including one or more audio portions and one or more textual portions. An audio transcript of the one or more audio portions of the presentation file may be generated. A textual transcript of the one or more textual portions of the presentation file may be generated. One or more rich portions of the presentation file may be determined based upon, at least in part, a comparison of the audio transcript and the textual transcript. At least the one or more rich portions of the presentation file may be presented.
Techniques for guiding an interaction with an electronic form via a computing device are described. For example, a form guidance engine is initiated. The form guidance engine maintains a state of the electronic form. The form guidance engine also maintains user information in, for example, a user profile. The user information is associated with a user of the computing device and relates to how the user interacts with the electronic form. Based on the user information, the form guidance engine anticipates a potential interaction with the electronic form given the state. Accordingly and prior to a user request for information about the electronic form, the form guidance engine generates a presentation configured to guide the user to perform the potential interaction with the electronic form via a computing device. A user response to the presentation is received. The form guidance engine performs an action associated with the electronic form and updates the state of the electronic form.
An autonomous intention, article search and actionable data generation system and method to query public or private as well as internal and external data sources that are available to an organization, tapping into all information in real-time and on an ongoing basis to make recommendations to take at least one action or to autonomously filter, find, identify, connect, merge, support, evaluate, select, and approve intentions and/or articles for a given search context, an instance context (such as one of a challenge, theme, topic, goal, objective, mission, target, focus area, problem, risk, or the like), and an organizational context (such as an industry, line of business, strategy, goals, objectives, areas of expertise, and the like). The system may also take into account a participant's past actions in similar situations, a participant's background, diversity and inclusion attributes, skills, interests, experience, location, and other participant attributes.