A method of beacon reception for a communication device in a wireless communication system is disclosed. The method comprises starting to receive a beacon from an access point (AP) of the wireless communication system, determining whether a specific element of the beacon is received, and determining whether to receive only a portion of the beacon according to the specific element.
This method, executed in a group of nodes of the ad hoc network (1) including a source (10), first and second relays (11, 12) and an addressee (13), the relays being neighbors of the source, the addressee being a neighbor of the relays, the source having useful data to be retransmitted towards a final addressee (15) through a routing path passing through the first relay (11), and then the addressee (13), consist of: computing a first characteristic quantity of an elementary path between the source (10) and the addressee (13), via the first relay (11) and a second characteristic quantity of an elementary path between the source (10) and the addressee (13), via the second relay (11); verifying the observance of a criterion for the first characteristic quantity; and, in case of negative verification, using the second relay (12) for relaying the useful data from the source (10), towards the addressee (13).
A computer-implemented technique can include establishing, by a mobile computing device having one or more processors, a first cellular connection between the mobile computing device and a first cellular carrier associated with a mobile virtual network operator (MVNO), detecting, by the mobile computing device, a condition indicative of (i) a level of cellular activity via the first cellular connection below an inactivity threshold and (ii) an available second cellular connection with a different second cellular carrier associated with the MVNO, and in response to detecting the condition: (a) terminating, by the mobile computing device, the first cellular connection, and (b) initiating, by the mobile computing device, the second cellular connection with the second cellular carrier associated with the MVNO.
In embodiments of the present disclosure, systems and methods implementing active-hot standby redundancy in server architectures are described. In an active-hot standby redundancy architecture, two or more matching service instances are installed in a network, on the same or different host computers. A standby service instance may maintain state information for every session maintained at an active service instance that it is poised to replace using a publish-subscribe communications network. When a failure occurs in the active instance, the standby instance may promote itself to active, and assume all aspects of the service identity and role of the active service instance it is replacing such that service to user devices continues without interruption.
Data distribution between mobile stations and external data paths is assigned to a new set of devices, distribution points. Each distribution point is independently coupled to mobile stations, also assigned to access points. Control elements operate to control the distribution points separately from the access points. Each access point maintains a substantially stateless link with each distribution point for which the two share a mobile station. Access points might exchange data with any one or more distribution points concurrently. Access points thus obtain greater bandwidth connectivity to external data paths. Mobile stations transfer between access points and transfer between distribution points independently. This has the effect that bandwidth connectivity between distribution points and external data paths have no particular requirement for VLAN separation. Mobile stations may roam among multiple Internet protocol subnets.
A method and related apparatus for sharing bandwidth in communication between a plurality of mobile clients and a plurality of access points, the method comprising: receiving client information from the plurality of mobile clients; determining that each of the plurality of mobile clients has been connected to an access point; determining if any access point has a subgroup of multiple mobile clients connected to it; and if affirmative, determining, on the basis of the client information, possible access points for each mobile client in said subgroup; assigning, for a first mobile client residing outermost in said subgroup, the outermost possible access point in the corresponding direction; assigning, for any subsequent mobile client in said subgroup, the outermost possible, non-assigned access point in the same direction as for the first mobile client; and signalling, to any mobile client requiring re-location to another access point, the identification of the assigned access point.
Antenna selection and reassignment in multiple radio access technology (RAT) communication systems with unlicensed spectrum is disclosed. Aspects include a user equipment (UE) monitoring for a channel reserving signal in each frame from multiple transmission sources. If no channel reserving signal is detected, then the UE reassigns one or more of the antennas previously assigned to the transmission sources with no activity detected. Additional aspects include base stations that determine a clear channel assessment (CCA) status for each of unlicensed carrier designated for transmission to a UE. The base station will transmit a receive antenna usage adjustment signal to the UE based on the determined CCA status.
The present disclosure relates to a method (30) relating to handover in a communication system (1). The method (30) comprises establishing (31) that a communication device (3) is involved in a handover process from a first cell (C1) to a second cell (C2); and increasing (33) transmission power of a scheduling assignment specific for the communication device (3). The disclosure also relates to a system, computer program and computer program products.
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus includes an user equipment which is configured to measure Minimization of Drive Tests (MDT) metrics, to measure Quality of Experience (QoE) metrics, to generate correlation information of at least one of the MDT metrics and at least one of the QoE metrics, and to report the correlation information.
In one example embodiment, a method (500) by a wireless device (110A-D) for performing parallel multicast measurements includes identifying, by the wireless device (110A-D), a parallel multicast measurement capability of the wireless device (110A-D). A configuration for performing parallel multicast measurements of a plurality of Multimedia Broadcast Multicast Service (MBMS) transmissions is received from a network node (115A-C). Based on the configuration received from the network node (115A-C), a procedure for performing the parallel multicast measurements of the plurality of MBMS transmissions may be adapted by the wireless device (110A-D). The plurality of parallel multicast measurements of the plurality of MBMS transmissions are then performed in accordance with the adapted procedure.
Channel clearance using a shared radio frequency spectrum band may be performed for both a base station and a user equipment (UE). A base station may perform a listen before talk (LBT) procedure and verify one or more channels in a shared radio frequency spectrum band are available for transmissions and, if the LBT procedure is successful, transmit a pre-grant transmission to one or more UEs. The UEs may perform an LBT procedure for channel(s) indicated in the pre-grant transmission. If the UE LBT procedure passes, the UE may transmit a channel clearance signal, and may transmit a feedback communication responsive to the pre-grant transmission. The feedback communication may indicate, for example, the pre-grant transmission was received and which of the one or more channels are available based on the LBT procedure. The base station may receive the feedback communication and initiate transmissions to the UE.
A method comprises responsive to adding of an additional base station for a user equipment, said additional base station having a closed subscriber cell, causing a message to be transmitted to a network entity, said message comprising information identifying a closed subscriber group associated with said additional base station.
Examples of distributed base station functionality in a telecommunication system (e.g., a distributed antenna system) are disclosed. In some aspects, the telecommunication system can include an interface with circuitry configured to communicate with one or more base-station entities, base-station components (such as baseband units or remote radio heads), or core-network entities. The telecommunication system can also include radio units that are positioned in an area for providing wireless coverage to terminal devices. The telecommunication system can also include a head-end unit that is communicatively coupled between the interface and the radio units. One or more devices in the telecommunication system can include a low-layer processing module. In some aspects, the low-layer processing module can perform functionality of a secondary eNodeB, such as (but not limited to) radio transport layer processing. In additional or alternative aspects, the low-layer processing module can perform physical layer processing that is split between uplink physical layer processing and downlink physical layer processing and/or split between secondary and primary physical layer processing.
Mobile security techniques may protect information stored on a subscriber identity module (SIM) card as well as services that are accessible through the SIM card from unauthorized use. The techniques include receiving a service request to perform a security function at a server. The security function may affect a service provided to a mobile device by a telecommunication network, in which the mobile device obtains the service using a SIM card. The techniques further include performing the security function. The performance of the SIM function may be terminated in response to the server receiving a reversion command or an expiration of a predetermined time period.
One or more selectively activated features needed at a device to use a network service may be identified. Authorization information and feature activation key(s) associated with features that the device has been authorized to activate may be obtained at the device. The feature activation key(s) may be used to activate and/or maintain activation of the authorized features that match the selectively activated feature(s) needed to use the network service. An authorization server may obtain a request to activate one or more selectively activated features of a device. The authorization server may verify that the selectively activated feature(s) are authorized to be used at the device based on an authorization agreement obtained at the authorization server. The authorization server may send proof that the device is authorized to use the selectively activated feature(s) and may send feature activation key(s) based on the authorization agreement in response to the request.
A privacy preserving sensor apparatus is described herein. The privacy preserving sensor apparatus includes a microphone that is configured to output a signal that is indicative of audio in an environment. The privacy preserving sensor apparatus further includes feature extraction circuitry integrated in the apparatus with the microphone, the feature extraction circuitry configured to extract features from the signal output by the microphone that are usable to detect occurrence of an event in the environment, wherein the signal output by the microphone is unable to be reconstructed based solely upon the features.
A method for a cellular telecommunications network includes selecting a target cell in the cellular telecommunications network, retrieving automatic neighbor relations (ANR) data including neighbor cell list information for a plurality of cells in the network, determining, from the ANR data, first and second cells that are neighbors to the target cell and use a same Physical Cell Identifier (PCI), and at least one of the first and second cells is an inbound neighbor to the target cell, determining that PCI confusion is present between the first and second cells with respect to the target cell, and resolving the PCI confusion.
A method for identifying source BSS in WLAN is proposed. A high efficiency (HE) access point (AP) sends a packet containing a basic service set (BSS) color to a HE station. The HE AP also sends a packet containing an assigned association identification (AID) to a very high throughput (VHT) station. The assigned AID comprises at least part of the BSS color information. The VHT station therefore sends a packet containing the at least part of the BSS color information such that any AP or station that receives the packet can determine the BSS the VHT station is in.
A method for implementing a virtual communication card is provided. The method is applied to a terminal device and includes: resolving a data file prestored locally to obtain communication card information carried in the data file; loading the data file when the data file is determined to be matched with communication card information to be used according to the communication card information; and activating the data file to be used as a virtual communication card when the data file is determined to be in an unregistered state. An apparatus for implementing a virtual communication card is further provided.
An information processing device of a cooperative system that further includes a portable device includes: a display that displays an image; a position detector that detects a position on a display surface of the display with which an object has made contact; and a hardware processor that detects the portable device in response to the position detector detecting a position with which an object has made contact, establishes a communication path with the portable device, switches an independent mode not cooperating with the portable device to a cooperation mode cooperating with the portable device when a communication path with the portable device is established and the portable device is detected by the hardware processor, and displays a related image that is related to the portable device on the display in response to the hardware processor no longer detecting the portable device in the cooperation mode.
Certain aspects of the present disclosure provide apparatus and methods for emulating the Alamouti structure or a similar space-time block code using a single RF chain. A UE may include a RF chain, at least one switching circuit, at least one analog modulator circuit, and a first and second antenna. The output of a RF chain may be coupled to an input of a switching circuit, the output of the switching circuit may be coupled to an input of a first analog modulator circuit, and the output of the first analog modulator circuit coupled to a first and second antenna. A hybrid coupler is one example of an analog modulator circuit.
A network system analyzes data samples using embeddings based on, for example, symbolic representations of the data samples or representations in latent dimension space. The network system coordinates providers who provide geographical location-based services to users. The network system may receive data samples from the client device of a provider. For instance, a sensor of the client device captures the data samples during a transportation service along a particular route. To verify that the data samples accurately indicate the location or movement of the provider, the network system can generate a test embedding representing the data samples and compare the test embedding with a reference embedding. The reference embedding is generated based on data samples captured for other similar services, e.g., corresponding to providers who also provided transportation services along the same particular route.
Provided is a method and apparatus of recognizing a location of a user device, and the method of recognizing a location of a user device. The method includes receiving a device signal fingerprint from a user device, calculating similarities between the device signal fingerprint and reference signal fingerprints collected inside a store and stored in a database in association with store information, and determining whether the user device is located inside or outside the store on the basis of the similarities.
Methods, apparatuses, and computer program products for a mobile or roaming base station are described. An operating mode of a mobile base station is determined, based upon the mobile base station's current location and/or current mobility mode. The operating mode of the mobile base station is switched from a full base station functionality to a limited base station functionality, based upon the determining. A connection to a network is established by the mobile base station.
At least one portable RF communications device in conjunction with at least two fixed-location service-area antenna stations respectively capable of RF communication with the at least one device performs the steps of: (I) using a portable device at a selected location to measure RF communications signals from the plurality of local fixed-location service-area antenna stations and electronically storing at least two of the respective reception signal strength measurements; and (II) monitoring a portable device location by causing the device to measure reception signal strength associated with local fixed-location service-area antenna stations signals, and to electronically compare these measurements with the stored at least two measurements.
A system for exchanging GPS or other position data between wireless devices for purposes of group activities, child location monitoring, work group coordination, dispatching of employees etc. Cell phones and other wireless devices with GPS receivers have loaded therein a Buddy Watch application and a TalkControl application. The Buddy Watch application communicates with the GPS receiver and other wireless devices operated by buddies registered in the users phone as part of buddy groups or individually. GPS position data and historical GPS position data can be exchanged between cell phones of buddies and instant buddies such as tow truck drivers via a buddy watch server. Emergency monitoring services can be set up with notifications to programmable individuals in case an individual does not respond. Positions and tracks can be displayed. TalkControl simplifies and automates the process of joining talk groups for walkie talkie services such as that provided by Nextel.
A system for exchanging GPS or other position data between wireless devices for purposes of group activities, child location monitoring, work group coordination, dispatching of employees etc. Cell phones and other wireless devices with GPS receivers have loaded therein a Buddy Watch application and a TalkControl application. The Buddy Watch application communicates with the GPS receiver and other wireless devices operated by buddies registered in the users phone as part of buddy groups or individually. GPS position data and historical GPS position data can be exchanged between cell phones of buddies and instant buddies such as tow truck drivers via a buddy watch server. Emergency monitoring services can be set up with notifications to programmable individuals in case an individual does not respond. Positions and tracks can be displayed. TalkControl simplifies and automates the process of joining talk groups for walkie talkie services such as that provided by Nextel.
An audio decoder device for decoding a compressed input audio signal having at least one core decoder having one or more processors for generating a processor output signal based on a processor input signal, wherein a number of output channels of the processor output signal is higher than a number of input channels of the processor input signal, wherein each of the one or more processors has a decorrelator and a mixer, wherein a core decoder output signal having a plurality of channels has the processor output signal, and wherein the core decoder output signal is suitable for a reference loudspeaker setup; at least one format converter device configured to convert the core decoder output signal into an output audio signal, which is suitable for a target loudspeaker setup; and a control device configured to control at least one or more processors in such way that the decorrelator of the processor may be controlled independently from the mixer of the processor, wherein the control device is configured to control at least one of the decorrelators of the one or more processors depending on the target loudspeaker setup.
An audio providing apparatus and method are provided. The audio providing apparatus includes: an object renderer configured to render an object audio signal based on geometric information regarding the object audio signal; a channel renderer configured to render an audio signal having a first channel number into an audio signal having a second channel number; and a mixer configured to mix the rendered object audio signal with the audio signal having the second channel number.
Methods and apparatus include headphones that measure an interaural time difference (ITD) and sound impulse responses to determine user-specific head-related transfer functions (HRTFs) for a listener. The headphones include head tracking, and sound is adjusted so that a location of a source of the sound continues to originate from a sound localization point (SLP) in empty space that is at least one meter away from the head of the listener while the head orientations of the listener change with respect to the SLP.
Audio speaker systems and methods are provided to detect movement of the speaker system or other device. An audio program content signal is converted into an acoustic signal, and the acoustic signal causes an echo signal. The echo signal is received and a relationship of the echo signal to the audio program content signal is quantified. A quantified value is compared to a stored quantified value and, based upon the comparison, a change in physical position is selectively indicated.
A hearing aid system according to some examples includes a hearing aid which includes a microphone, amplifier, speaker, and a telecoil. In some examples, the hearing aid may include a battery or a capacitor for storing power wirelessly received from a distance separated wireless power transfer unit. The telecoil may be configured to receive audio signals and couple the audio signals to audio processing circuitry of the hearing aid. The telecoil may be further configured to receive power signals from the base unit and couple the power signals to power supply circuitry of the hearing aid, for example for charging the battery of the hearing aid. Examples of transmitter and receiver coils, and of distance and orientation optimization are described. Examples of wireless charging systems that may be used with hearing aids or other medical assistance devices are described.
A hearing assistance system comprises a left ear device and a right ear device respectively configured to be worn by a wearer. One or more microphones are provided at each of the left and right ear devices. One or more positional sensors are configured to determine a three-dimensional position of the hearing assistance system in response to the wearer looking at a sound source in space. A user interface is configured to receive an input directly from the wearer. A memory is configured to store the three-dimensional position of the hearing assistance system in response to the received input. A processor is configured to adjust a directional polar pattern of the one or more microphones provided at one or both of the left and right ear devices in response to the stored three-dimensional position.
A Micro Electro Mechanical System (MEMS) microphone is provided. The MEMS microphone includes: a substrate including an audio hole and having an oxide layer at a predetermined segment along an upper surface edge; a vibration electrode that is supported by a support layer that is formed along an upper surface edge in a state that is separated to the inside of the center from the oxide layer at an upper portion corresponding to the audio hole; a fixed electrode that is formed at an upper portion of the oxide layer and in which one side of the support layer is bonded to one side of a low surface; and a back plate that is formed at an upper portion of the fixed electrode and in which the other side of the support layer is bonded to one side of a low surface.
It is disclosed a speaker module, including a module housing, a speaker assembly and a heat-dissipating member. The module housing has an inner cavity, the inner cavity includes a front cavity and a rear cavity spaced apart from the front cavity, and the front cavity is communicated with an external space. The speaker assembly is mounted in the inner cavity, the speaker assembly includes a vibration diaphragm spacing the front cavity and the rear cavity apart. The heat-dissipating member has a heat-conducting section and a heat-dissipating section, the heat-conducting section is in contact with the speaker assembly, the heat-dissipating section stretches into the front cavity. The vibration of the vibration diaphragm allows air in the front cavity to flow to increase the heat-dissipating rate of the heat-dissipating section. The heat-dissipating section may have a heat-dissipating structure for increasing a heat-dissipating area, and the heat-dissipating structure may be a heat-dissipating fin. The speaker module provided by the present invention has a favorable heat dissipation performance, and is capable of duly transferring heat generated by the speaker during operation to the outside of the module.
A method, apparatus and computer program, the method comprising; using a first microphone and a second microphone to detect ambient noise where the first microphone is positioned at a first position within a headset and the second microphone is positioned at a second position within the headset; comparing the ambient noise detected by the first microphone to the ambient noise detected by the second microphone to determine locations of the microphones; and using the determined locations of the microphones to enable a spatial audio output signal to be rendered by the heads.
Provided is a video audio system including electroacoustic conversion units which include an electroacoustic conversion film having a macromolecular composite piezoelectric body formed by dispersing piezoelectric body particles in a viscoelastic matrix formed of a macromolecular material that is viscoelastic at normal temperature and thin film electrodes respectively laminated on both surfaces of the macromolecular composite piezoelectric body, curve and support the electroacoustic conversion film, and use at least a part of the electroacoustic conversion film as vibration regions and a display device which is a screen or a video display device to which videos are projected, in which at least one of the electroacoustic conversion units is disposed on a rear surface opposite to a surface of the display device on which videos are displayed, the plurality of vibration regions is arranged on the entire rear surface of the display device, and location information of the vibration regions is included in sound data that are input to the electroacoustic conversion units.
The present disclosure is directed to systems, apparatuses, and methods for wirelessly delivering multi-channel audio over a packet based network with tight synchronization, high fidelity, and/or low delay as described above. The systems can include a source device that provides multi-channel audio to a distributor device, which wirelessly distributes the multi-channel audio over the packet based network to audio rendering devices, referred to as “sink” devices. The distributor device and the sink devices each include a playback clock that is used to read audio samples of the multi-channel audio from a local memory and drive a digital-to-analog converter (DAC) coupled to a speaker to render the audio samples.
Disclosed are a main speaker, sub speaker and system including the same. The present invention includes a main speaker configured to receive a first audio signal from a first source device and output the received first audio signal and at least one sub speaker configured communicate with the main speaker by wire or wireless. Particularly, if the communication with the main speaker is connected, the sub speaker outputs the first audio signal. If the sub speaker is separated from the main speaker, the sub speaker outputs the second audio signal.
The present invention relates to a microphone apparatus (10) with a main beamformer (F, BF) that provides a directional audio output (SF) by combining microphone signals (X, Y) from multiple microphones (11, 12).The quality of beamformed microphone signals normally depends on the individual microphones having equal sensitivity characteristics across the used frequency range. The invention enables automatic adaptation of the main beamformer (F, BF) to variations in microphone sensitivity and to changes in the alignment of the microphone apparatus (10) with respect to the user's mouth (7).This is achieved by having the microphone apparatus (10): estimate a suppression filter (Z) for an optimum voice-suppression beamformer (Z, BZ) based on the microphone signals (X, Y); estimate a candidate filter (W) for a candidate beamformer (W, BW) as the complex conjugate of the suppression filter (Z); estimate the performance of the candidate beamformer (W, BW); and replace a main filter (F) in the main beamformer (F, BF) with the candidate filter (W) if the candidate beamformer (W, BW) is estimated to perform better than the current main beamformer (F, BF).The invention may be used to enhance speech quality and intelligibility in headsets 1 and other audio devices that pick up user voice.
A system and method for processing sounds. The sound processing system includes a sound sensing unit including a plurality of microphones, wherein each microphone is configured to capture non-manipulated sound signals; a beam synthesizer including a plurality of first modules, each first module corresponding to one of the plurality of microphones, wherein each first module is configured to filter the non-manipulated sound signals captured by the corresponding microphone to generate filtered sound signals; and a sound analyzer communicatively connected to the sound sensing unit and to the beam synthesizer, wherein the sound analyzer is configured to generate a manipulated sound beam based on the filtered sound signals.
A passive radiator assembly for a loudspeaker system comprising: a pair of passive radiators including a first and a second passive radiator; a frame having a first, a second and a third opening wherein the first and second opening are located on parallel sides of the frame, respectively, wherein the first and the second passive radiator are mounted into the first and second opening of the parallel sides of the frame, respectively, so as to oppose each other at a predetermined distance.
Embodiments of wireless audio systems and methods for wirelessly communicating audio information are disclosed herein. In one example, a wireless audio system includes a first and a second wireless headphones. The first wireless headphone is configured to receive, from an audio source, audio information using a short-range wireless communication; in response to successfully receiving the audio information, generate an error correcting code based on the audio information; and transmit an error correcting message including the error correcting code. The second wireless headphone is configured to receive, from the audio source, the audio information using the short-range wireless communication; receive, from the first wireless headphone, the error correcting message including the error correcting code; and in response to successfully receiving the audio information based on the error correcting code, transmit an ACK message to the audio source. One of the first and second wireless headphones works in a snoop mode to communicate with the audio source based on communication parameters of another one of the first and second wireless headphones.
A microphone boom structure includes a first and second end boom segments, and intermediate boom segments sequentially disposed between the first end boom segment and the second end boom segment. An end of the first end boom segment is hinged with an end of the adjacent intermediate boom segment, an end of the second end boom segment is hinged with an end of the adjacent intermediate boom segment, and the ends of two adjacent intermediate boom segments are hinged. An adjusting structure is provided between the first end boom segment and the adjacent intermediate boom segment, between the second end boom segment and the adjacent intermediate boom segment, and between the two adjacent intermediate boom segments. The adjusting structure includes an axial hole formed in a boom segment, an adjusting bar inserted into the axial hole, and an elastic compression member disposed between the axial hole and the adjusting bar.
A removable cartridge for a portable communication device. The removable cartridge includes frame having a first surface, and an opposite second surface. The second surface is non-planar and is shaped to conform to a shape of a speaker cone in the portable communications device. The removable cartridge also includes a membrane coupled to the first surface of the frame. A portion of the membrane is suspended over an open gap defined by the frame.
Methods, systems, and media for presenting suggestions of media content are provided. In some implementations, the method comprises: determining an item of media content; determining a probability of the item of media content being watched at one or more times based on at least one of: a characteristic of a person; a characteristic of a group; and a characteristic of the item of media content; creating a user interface which suggests that the item of media content be watched at one or more times based on the determined probability; and presenting the user interface.
Techniques and apparatuses for view-selection feedback for a visual experience are described. These techniques and apparatuses enable writers, directors, and other story creators to create or alter visual experiences based on feedback provided by view selections made during visual experiences. This feedback can be analyzed to determine portions of a visual experience that users focused on, wanted to see more of, were not interested in, found difficult to understand, and so forth. With this feedback, visual experiences, such as live-action movies and animated shorts, can be created or improved.
It is an object of the present invention to allow for appropriate control of how to present content during presentation of the content. An information processing apparatus obtains content identification information. Storage means stores operation logs each of which includes both the time at which an operation to control presentation of content was performed during presentation of the content and details of the operation. The information processing apparatus retrieves operation logs corresponding to the obtained content identification information from the storage means. Based on the retrieved operation logs, a tendency of operation changes is identified. In accordance with the tendency, the information processing apparatus generates control information for controlling how to present content. The control information includes details of control and a timing of the control. The information processing apparatus provides the control information.
According to one embodiment, a video sender comprises: a video processor and a communication module. The video processor creates video. The communication module is configured to communicate with a video receiver. The communication module comprises: a receiver and a transmitter. The receiver receives, from the video receiver, specific information specifying which one of a color signal and a frame rate takes precedence over the other one in transmission. The transmitter converts the video created by the video processor into video in which one of the color signal and the frame rate takes precedence over the other one in accordance with the specific information, and transmit the video thus converted to the video receiver.
Systems and methods are described herein for determining a level of user engagement based on user interactions. A media guidance application is configured to retrieve a first record of a first plurality of user inputs, including input type, received during consumption of a media asset. A second time interval, prior to the first time interval, is selected by shifting the first start time and the first end time. A second record of a second plurality of user inputs received during the second time interval, including input type, is retrieved. A first media asset consumed during the first time interval and a second media asset consumed during the second time interval are determined, and the level of user engagement for the first media asset is determined based on the first record and the second record.
An apparatus for providing community driven content includes at least one sensor for recording sensor data, a network interface, a memory, and a processor connected to the sensor, the network interface, and the memory. The processor is configured to record usage history for engagement with the apparatus by a first user over a period of time and receive the sensor data from the at least one sensor for actions by the first user over the period of time. The processor determines user preferences for the first user based on the usage history and the sensor data, and determines whether a second user is available for interaction with the first user. The processor then outputs the suggested action, at a predetermined time, to at least one connected display device or audio device.
Disclosed are methods and systems for providing alternative content to a user while the user performs a media control request (e.g. fast forward request, fast rewind request) on media content (e.g., television episode, movie, advertisement, and the like) that is being viewed by the user. The content can be caused to be displayed based on a time remaining until the anticipated end of the media control request and/or a requested viewing speed of the media control request (e.g., 2×, 4×, etc. . . . ).
Electronic digital display systems, including roadside display devices, vehicle-based devices, personal mobile devices, intermediary servers, advertising servers, and/or additional external data sources may operate individually or in combination to identify one or more vehicle locations, driving routes, driver and passenger characteristics, and the like. Vehicle and individual characteristics may be determined based on data received from traffic cameras, vehicle-based devices, personal mobile devices, and/or other data sources. Based on the vehicle characteristics, individual characteristics, driving data and driving patterns, and the like, digital content may be determined for electronic roadside displays to be viewable by the approaching vehicles, and/or other digital display devices to be viewable by associated individuals via other display devices and at other times. Various techniques may be used to determine customized digital content, such as targeted advertisements and/or driving or vehicle safety messages, including retrieval and aggregation of certain characteristics, prioritization of characteristics, and real-time auctions for advertisements. Additionally, certain systems may be interactive to allow user responses and follow-up content via on-board vehicle devices or other user devices.
A computing device includes memory for instructions and offers in a virtual wallet. A processor pairs private area networking (PAN) circuitry with a television to enable interaction with offers delivered in conjunction with commercials streamed to the television. The processor detects a first offer delivered in conjunction with a particular broadcast commercial, the first offer including a selectable indicia and delivers the first offer to the virtual wallet responsive to detecting selection of the selectable indicia.
Data processing methods, live broadcasting methods and devices are disclosed. An example data processing method may comprise converting audio and video data into broadcast data in a predetermined format, and performing speech recognition on audio data in the audio and video data, and adding the text information obtained from speech recognition into the broadcast data. In real time, text information obtained from speech recognition according to the audio data can be inserted.
A method and system disclosed assigns first videos to hardware decoders having a first configuration. The hardware decoders in the first configuration are to decode the first videos for concurrent presentation on a display of a user device. The method and system receives an indication that second videos are to be presented on the display of the user device. The method and system determine a second configuration of the hardware decoders based on an estimated penalty for the second configuration. The method and system assigns the second videos to the hardware decoders for decoding according to the second configuration.
A video encoding apparatus is a video encoding apparatus for subjecting a video image to motion compensated prediction coding, comprising an acquisition module to acquire available blocks of blocks having motion vectors from encoded blocks adjacent to a to-be-encoded block and number of the available blocks, an acquisition/selection module to select one selection block from the encoded available blocks, a selection information encoder to encode selection information specifying the selection block using a code table corresponding to the number of available blocks, and an image encoder to subject the to-be-encoded block to motion compensated prediction coding using a motion vector of the selection block.
A method for distributing a load, according to one embodiment, includes: identifying characteristics of each of frames included in a received bit stream; and distributing loads of a plurality of cores based on the characteristics of each of the frames whenever the frames are decoded.
An image compression method includes compressing an input image with first and second compression methods to generate first and second (e.g., lossless and lossy) compressed images. First and second residual layers are generated, based on a difference between the first and second compressed images. Connected components in the residual layers are identified. Each connected component includes a group of one or more pixels that, when mapped to the second compressed image is connected, in first and second directions, to pixels in the second compressed image. A compressed image is generated, which includes, for a connected component identified in the first residual layer, removing corresponding pixels from the second compressed image, and for a connected component identified in the second residual layer, adding corresponding pixels to the second compressed image. The system and method can thus provide file size savings associated with lossy compression while avoiding character replacement.
The invention generally relates to a method of providing random access for video data in which a P-frame of the video data is configured to be random accessible in addition to I-frames. More specifically, the invention relates to a method of providing random access for video data in which a P-frame is configured to be random accessible based on a random access reference frame which is provided via a separate channel such as header area of video data packets or a metadata file, whereby the random access for video data may be effectively provided with overcoming the conventional video random access technology depending on the I-frame only. The invention makes it possible to configure a P-frame random accessible simply by accompanying a random access reference frame of small datasize, whereby video compression ratio may be improved due to smaller numbers of I-frames being included in video data than conventional arts.
Techniques related to intra coding performance enhancements discussed. Such techniques may include determining intra coding modes based in part on processing performance costs associated with available intra modes and/or generating a block encode order based on intra coding modes, performing encoding, and re-ordering the encoded blocks to a default coding order for bitstream insertion.
Coefficient coding for transform units (TUs) during high efficiency video coding (HEVC), and similar standards, toward simplifying design while enhancing efficiency. Elements of the invention include coefficient coding for TUs with up-right diagonal scans being modified, and selectively applying multi-level significance map coding.
According to an embodiment, a video compression apparatus includes a first compressor, a second compressor, a partitioner and a communicator. The first compressor compresses a first video to generate a first bitstream. The second compressor sets regions in a second video and compresses the regions so as to enable each region to be independently decoded, to generate a second bitstream. The partitioner partitions the second bitstream according to the set regions to obtain a partitioned second bitstream. The communicator receives region information indicating a specific region that corresponds to one or more regions and selects and transmits a bitstream corresponding to the specific region from the partitioned second bitstream.
Techniques related to video pre-processing for video coding are discussed. Such video pre-processing techniques may include applying adaptive temporal and spatial filtering to pixel values of video frames of input video to generate pre-processed video such that the adaptive temporal and spatial filtering includes blending spatial and temporal filtering of the individual pixel value when the block of pixels is a non-motion block and spatial-only filtering the individual pixel value when the block of pixels is a motion block.
A system and method for mitigating motion artifacts in a media streaming network, wherein a scheme for facilitating adaptive post-decode (PD) filtering at a client device is provided. Extraction of still area grid information is effectuated at a source media processing node. Extracted still area grid information is multiplexed with audio/video components for appropriately signaling to downstream devices based on media containerization deployed for distribution. A client device is operative to select a suitable PD filter based on a plurality of selection criteria and apply the selected PD filter to the still area grids of the decoded image frames.
A method of image decoding can include generating a quantization block by inversely scanning quantization coefficient information; generating a transform block by inversely quantizing the quantization block using a quantization step size; generating a residual block by inversely transforming the transform block; reconstructing an intra prediction mode group indicator and a prediction mode index of a current block; constructing a first group including three intra prediction modes using valid intra prediction modes of left and top blocks of the current block; determining the intra prediction mode corresponding to the prediction mode index in the first group as the intra prediction mode of the current block when the intra prediction mode group indicator indicates the first group; generating a prediction block on the basis of the determined intra prediction mode of the current block; and generating a reconstructed block using the residual block and the prediction block.
Various arrangements for monitoring and mitigating infrared (IR) interference from a display device are presented. IR emissions from a display device are measured the IR signaling characteristics may be adjusted to mitigate interference from the emissions. Calibration methods may be used determine display emission characteristics by displaying test patterns and video clips. Characteristics of the display patterns and video clips may be correlated to high IR emissions.
A variable focal length (VFL) lens system is provided including a VFL lens, a VFL lens controller, an objective lens, a camera and an optical power monitoring configuration. During a standard workpiece imaging mode, the objective lens transmits workpiece light along an imaging optical path through the VFL lens to the camera, which provides a corresponding workpiece image exposure. During an optical power monitoring mode, the optical power monitoring configuration produces a monitored beam pattern which travels along at least a portion of the imaging optical path through the VFL lens to the camera, which provides a monitoring image exposure. Different monitoring image exposures are acquired at different phase timings of the periodic modulation of the VFL lens, and a dimension of the monitored beam pattern is measured in each monitoring image exposure as related to an optical power of the VFL lens at the corresponding phase timing.
According to one of aspects, a display device includes: a display unit configured to three-dimensionally display a predetermined object, by displaying images respectively corresponding to both eyes of a user by being worn; a detection unit configured to detect displacement of a predetermined body in a display space of the object; and a control unit configured to perform an operation associated with the object, according to the displacement of the predetermined body detected by the detection unit.
An electronic device for generating a corrected depth map is described. The electronic device includes a processor. The processor is configured to obtain a first depth map. The first depth map includes first depth information of a first portion of a scene sampled by the depth sensor at a first sampling. The processor is also configured to obtain a second depth map. The second depth map includes second depth information of a second portion of the scene sampled by the depth sensor at a second sampling. The processor is additionally configured to obtain displacement information indicative of a displacement of the depth sensor between the first sampling and the second sampling. The processor is also configured to generate a corrected depth map by correcting erroneous depth information based on the first depth information, the second depth information, and the displacement information.
A biological imaging device includes an emitting unit that emits parallel light to a first part of a finger. The device includes an imaging unit that images the first part and a second part connected to the first part. The first part is a fingerprint part between a distal interphalangeal joint and a fingertip, and the second part is a part between a proximal interphalangeal joint and the distal interphalangeal joint. The device includes a finger root guide on which a root of the finger is placed.
A system that incorporates teachings of the present disclosure may include, for example, a method at a gateway device that registers at least one mobile phone number with the gateway device via a femtocell integrated with the gateway device when a mobile device associated with the at least one mobile phone number is within range of the femtocell, registers at least one voice over internet protocol phone number with the gateway device, and selectively receives and makes calls using one of a set top box registered with the gateway device, the mobile device registered with the femtocell, a voice over internet protocol phone corresponding to the at least one voice over internet protocol phone number. Other embodiments are disclosed.
A circuit applied to a television is provided. The television includes a memory and a display panel. The circuit includes an image processing circuit, a control circuit, an image capturing circuit and an output circuit. The image processing circuit processes image data to generate processed image data. The control circuit generates a control signal according to a switch signal. According to the control signal, the image capturing circuit captures the processed image data as predetermined image data and stores the predetermined image data to the memory. The output circuit transmits the predetermined image data to the display panel according to the control signal.
A method and device for rendering video content on a display. The device includes a processing unit and a memory, which memory contains instructions executable by the processing unit, whereby the device is operative to render the video content in one of a number of surfaces designated for displaying visual content on the display, while rendering at least one image extracted from the video content in at least another one of the surfaces; and render, when the video content reaches a point in time corresponding to a position where the at least one image is extracted from the video content, the video content in the another one of the surfaces thereby replacing the at least one image.
A solid-state imaging device comprised of a first substrate on which a pixel part is formed and a second substrate on which a column readout circuit is formed along a column level connection part, a row driver is formed along a row level connection part, and a pitch conversion-use interconnect region including a slanted interconnect for pitch conversion among interconnects is formed, the pitch conversion-use interconnect region is formed at least between the end part of the column readout circuit having a third pitch shorter than the pixel part and the end part of the column level connection part and/or between the end part of the row driver having a fourth pitch shorter than the pixel part and the end part of the row level connection part.
Various embodiments of the present technology may comprise methods and apparatus for a CCD image sensor. The image sensor may comprise a center channel disposed along a horizontal center line of the pixel array for collecting and transferring charge. The center channel is electrically coupled to a lateral overflow drain. In various embodiments, the image sensor may comprise a light shield under a gap between neighboring microlenses, such as a gap along the center line, to block light, such as to maintain a uniform, spatial sampling pattern across the device. In various embodiments, the image sensor may comprise a barrier region disposed between the center channel and the lateral overflow drain, for example to prevent charge from the lateral overflow drain being injected back into the center channel and adjacent pixels.
The invention relates to a visible light image and infrared image fusion processing system and a fusion method. The fusion processing system comprises an image acquisition module, an image fusion module and an image display module, wherein the image fusion module is connected with the image acquisition module and the image display module. By adoption of the fusion method, the fusion ratio of a visible light image to an infrared image can be adjusted according to requirements, and detailed images are filtered and compared and then enhanced, so that detail information of a fused image is improved, and noise interference is avoided. Furthermore, fusion weights of the visible light image and the infrared image and the detail enhancement degree can be flexibly controlled through external parameter adjustment, and thus various display requirements are met.
A method and system for capturing images of a liquid sample flowing through a field of view of an imaging device that can include stepping a focus mechanism of the imaging device through a plurality of focus values and capturing a plurality of images of the sample at each of the plurality of focus values as the sample flows through the field of view of the imaging device. In this way, image capture can proceed before a focus value has been determined and capture images that are in focus can be used for further processing subsequently.
In various embodiments, an image sensor and related methods of operation of the image sensor are disclosed. In an embodiment, an image sensor includes at least one pixel. The at least one pixel including a transistor to couple an overflow capacitor to a floating diffusion node. Under a low light condition, photocharge is to be collected in a floating diffusion, but substantially not into an overflow node. Under a high light condition, photocharge is to overflow into the overflow node. Other sensors and related operations are disclosed.
A method for focusing may include receiving a first image stack of a first field of view, the first image stack including images captured with different focus from the first field of view; determining, from the first image stack, a first spatial distribution of focus depths in which different areas in the first field of view are in focus; determining a first local sample thickness and a first sample tilt in the first field of view based on the first spatial distribution of focus depths; and estimating, based on the first local sample thickness and the first sample tilt, a focus setting for capturing a second image stack from a second field of view.
There is provided a solid state image capturing apparatus including an image capturing element for photoelectric converting an incident light; a light shielding filter for shielding a part of the incident light; and a metal plate partly having an opening for fixing the light shielding filter at a position for blocking the opening, an end of the opening of the metal plate being etched and antireflection treated. Also, a camera module and an electronic device are provided.
A method, system, and computer program product for applying a perceptually uniform color space to image color values within a captured image data. The method includes identifying, via a processor of an image capturing device, a perceptually uniform color space that includes only real colors identified within a plurality of real-world images. The method further includes applying, via the processor, the perceptually uniform color space to a color processing stage of an image processing pipeline. The method further includes in response to receiving, at the image capturing device, image data including image color values associated with a primary color space, converting, via the processor, the image color values to the perceptually uniform color space to generate image data having more perceptual uniformity for colors that are frequent in the real world.
A non-transitory computer readable storage medium storing computer readable instructions that are executable by a computer in an information processing apparatus having a communication interface, through which the information processing apparatus is connected with a printer, is provided. The information processing apparatus has a first channel and a second channel configured to cause the printer to print an image based on image data. The computer readable instructions, when executed by the computer, cause the computer to conduct a first printing control to cause the printer to print the image through the first channel, determine whether image printing to print the image by the printer under the first printing control failed, based on a determination that the image printing under the first printing control failed, conduct a second printing control to cause the printer to retry the image printing based on the image data through the second channel.
The image forming system includes an image forming apparatus and a communication terminal. When it is detected that an operation is being performed onto an input unit of the image forming apparatus while the image forming apparatus is connected to the communication terminal, the image forming apparatus is configured to perform a first notification to notify the communication terminal that an operation is being performed onto the input unit. When the image forming apparatus performs the first notification, the communication terminal is configured to perform a second notification corresponding to the first notification in the communication terminal.
This disclosure provides a document management method and system to monitor activity associated with a processed document according to an exemplary embodiment of the disclosure, the document management system is configured to apply security controls to a document and provide a full organizational audit history of documents processed.
An image capture and output method comprises steps of providing an image capture device, continuously capturing a plurality of line images from an initial position and recording a position information corresponded to each line image, calculating the difference between the position information of the first line image and the initial position and the differences between the position information of each of the rest line images and a former one of the line image to obtain a fill information, filling each line image into an image buffer according to the fill information, and outputting the image buffer as a product image. Therefore, the deformation issue is effectively solved, the storage memory is saved, and the manufacturing cost is lowered.
An image forming system includes an image forming apparatus and a postprocessing device. The image forming apparatus includes a first communication unit, a paper feeder, and a first control unit. The postprocessing device includes a second communication unit, a postprocessing unit, and a second control unit. The second control unit obtains a first time to perform the postprocessing and a second time to transition to a performable state configured to perform the postprocessing. The first control unit obtains attribute information necessary for the second control unit to obtain the first time and the second time. When the second communication unit receives the attribute information, the second control unit transmits information indicating the first time and the second time. The first control unit controls the operation of the paper feeder based on the information indicating the first time and the second time received by the first communication unit.
A plurality of address books including at least an address book for an administrator are stored in a storage unit, and it is determined, based on whether a request to display an address book is received via a screen of a transmission function or a request to display an address book is received via a screen of a transfer function, whether or not to display the address book for the administrator as a default from the plurality of address books stored in the storage unit.
An image processing method for processing a display image includes using an image forming apparatus which includes a position detector detecting a position of contact with a display screen and forms an image on a recording medium based on a display image displayed on the display screen. The display image includes an object image indicative of an object for an image formation and a medium image indicative of the recording medium, and the image processing method includes modifying magnification of the object image with respect to the medium image, without modifying the medium image, based on contact positions of two points detected by the position detector.
Example implementations relate to PRNU suppression. For example, PRNU suppression may include performing a calibration surface PRNU characterization using a scanning system, performing a document-based PRNU characterization using the scanning system, and determining a correction function for PRNU suppression for the scanning system based on the calibration surface PRNU characterization and the document-based PRNU characterization.
A Bluetooth apparatus for a vehicle controls a connection between a plurality of Bluetooth profiles and a terminal of a user based on whether a driver's seat is occupied by the user or based on whether the driver's seat is occupied by the user and whether the terminal of the user is located in the vehicle.
A wearable device and corresponding method include producing, at a wearable device, an incoming call processing option list in response to a rejection input from a user rejecting an incoming call from a mobile terminal. The wearable device and corresponding method further transmit, from the wearable device to the mobile terminal, a result value corresponding to a gesture of the user and in response to the incoming call processing option list.
It is desirable to be able to more appropriately notify a user of a display apparatus of the state of a mobile phone. In view of this, an output control apparatus is provided, the output control apparatus including: an information receiving unit that receives information from a communication device; a notification data storage unit that stores notification data associated with the information from the communication device; a notification data output unit that outputs the notification data corresponding to the information received by the information receiving unit; and an output control unit that makes different output control for the notification data corresponding to the received information, depending on whether or not an output queue count for the notification data corresponding to the received information is smaller than a predetermined number when the information receiving unit receives the information.
A display unit includes: a display layer including a pixel electrode; a semiconductor layer provided in a layer below the display layer, the semiconductor layer including a wiring layer that includes a material removable by an etchant by which the pixel electrode is also removable; and a terminal section configured to electrically connect the semiconductor layer to an external circuit, the terminal section including a first electrically-conductive layer made of a material same as a material of the wiring layer.
A method of providing information regarding an Ethernet frame, within the Ethernet preamble of the Ethernet frame, comprises inserting into the Ethernet preamble an inter-line-card header that includes a start control character, a version number, a parity bit, a source port, a destination port, and a forwarding domain entry; and preserving said inter-line-card header, inside of said Ethernet preamble, in a Media Access Control (MAC) sub-layer in said Ethernet frame. The method may include a step of selecting the decoding format for the inter-line-card header corresponding to the version number and/or forwarding other Ethernet frames according to additional forwarding information provided by the forwarding domain entry. The inter-line-card header may be preserved in the MAC sub-layer by keeping the Ethernet preamble at the beginning of an Ethernet frame received over an Ethernet backplane, and passing the combined preamble and associated Ethernet frame to an inter-line-card header processing module.
Methods and systems for data transfer include adding a data chunks to a priority queue in an order based on utilization priority. A reducibility score for the data chunks is determined. A data reduction operation is performed on a data chunk having a highest reducibility in the priority queue using a processor if sufficient resources are available. The data chunk having the lowest reducibility score is moved from the priority queue to a transfer queue for transmission if the transfer queue is not full.
A mobile terminal and a control method therefor are disclosed. According to at least one embodiment of the present invention, it is able to provide a mobile terminal capable of reducing consumed power by controlling an alarm period for waking up an application performing synchronization with a server and a method of controlling therefor. Moreover, according to at least one embodiment of the present invention, it is able to provide a solution for controlling an alarm period of an application.
A computer implemented method, system and computer program product for observing a mobile device's interaction with a set of resources in a geographic location, and creating a usage profile for the set of resources based on the mobile device's interactions with the resources. The usage profile includes a prediction of a subset of resources that will be used at a second geographic location in order to migrate the subset of resources to the second geographic location when the mobile device moves to the second geographic location.
A host device receives a predetermined combination of keystrokes a predetermined number of times within a predetermined time interval, from a terminal device communicatively connected to the host device. In response to receiving the predetermined combination of keystrokes the predetermined number of times within the predetermined time interval, the host device suspends transmission of log messages from the host device to the terminal device for at least a predetermined length of time.
Methods and devices for device service discovery may include receiving a query for a device service including one or more protocol-specific services connected to or discoverable by a computer device. The methods and devices may include mapping the query to one or more protocol-specific adapters selected based on the protocol-specific services. In addition, the methods and devices may include identifying at least one device endpoint representing at least one device that supports the device service and generating a list of device endpoints and corresponding service properties for each device that supports the device service.
Certain embodiments described herein are generally directed to processing domain objects in a distributed system using logical sharding. In some embodiments, a central control plane (CCP) node receives a domain object. In some embodiments, if the CCP node determines that the domain object is not already present in a shared data store and that the CCP node is the logical master of the domain object, the CCP node generates a status based on the domain object, and stores the status and domain object in the shared data store. In some embodiments, the shared data store notifies the plurality of CCP nodes of the stored status and domain object.
Content (e.g., data, such as binary data) can be copied from one device and pasted to another device. One or more embodiments accomplish this by detecting when a request to perform a copy operation has been issued, receiving content that was selected at the time the request to perform the copy operation issued, and publishing the data to a server running on the device.
Optimizing web page loading by condensing web requests for files of a certain kind, format, or style. A system for web page loading may incorporate an embedded device having a processor, a web browser, and a web server for the embedded device connected to the web browser. One or more requests to the web server for files may be made by the web browser. Grouping a number of files of modules into one or a smaller number of files may speed up loading the files or requests for a web page. The one or more requests made by the web browser or the grouping the number of files into one or more files may be effected by a processor. The embedded device may combine resources on the fly, during runtime or dynamically into fewer resources when a request to do so is made.
A computer-implemented method of enabling participation by a first client and a second client in a communication session in a multi-dimensional virtual environment, the multi-dimensional virtual environment having first and second avatars respectively associated with the first and second clients and a plurality of objects distinct from the avatars. The method includes receiving from the first client a first annotation associated with a first object of the plurality of objects, transmitting the first annotation to the second client for display at the second client in association with the first object, receiving from the second client a second annotation associated with a second object of the plurality of objects, and transmitting the second annotation to the first client for display at the first client in association with the second object.
Social grouping using a device may include determining, by the device, a set of attributes associated with interactions between a user and a set of contacts, wherein the set of attributes associated with the interactions is related to the device. The contacts may be organized into groups. The groups may be hierarchically ordered with at least one of the groups being a subgroup of another one of the groups.
Approaches are described for a client (e.g., an application executing on a computing device) requiring a particular storage format to provide information describing its storage format to a service, such as a multi-tenant computing environment. The service contains data that the client desires to acquire, but in various embodiments, the data on the service is in a different storage format than the format required by the client. The service receives the information describing the storage format and processes the data accordingly, and then provides the processed data to the client in the format required by the client.
A method and a file networking system (FNS) transform a content file into a content-centric social network with managed connectivity and indexable touchpoints. The FNS injects a tracking code with widgets for user activities into each portable copy of the content file when user devices request access to the content file before distributing the portable copies to the user devices through a network. The FNS establishes a bidirectional communication with the distributed portable copies (DPCs) through the network to receive tracking information including user created touchpoints identified by the tracking code based on usage of the DPCs. The FNS indexes the touchpoints and creates a satellite internet of users of the DPCs based on invite information and usage of the DPCs. The FNS establishes communication between users of the DPCs in the satellite internet using the widgets through the tracking code and the indexed touchpoints, whereby grouping is automatically achieved.
Technologies are described herein for reducing network bandwidth utilization during file transfer. An application or another type of program identifies embedded objects in a file. The application then replaces the embedded objects with corresponding unique placeholder objects that are more highly compressible than the embedded objects. The application then compresses the file containing the unique placeholder objects. The application then transmits the compressed file to a network service that provides functionality for converting the file format of the file or for processing the file in another manner. The processed file generated by the network service also includes the unique placeholder objects. When the application receives the processed file from the network service, the application replaces the unique placeholder objects in the processed file with the embedded objects from the original file. The application can then open the processed file for viewing, editing, or another purpose.
Embodiments provide quality of service for media content delivery over capacity-constrained communications links to user devices by exploiting usage models and path awareness. For example, one or more uncongested beams can be identified as preceding one or more congested beams (e.g., by computing a congestion map) along a predicted transport path of a user device moving through a multi-beam satellite communications system. A prediction can be made aps to one or more future requests that are likely to be made by the user device for pre-positionable types of media content, and that are likely to be serviced by one of the subsequent congested beams. When such a request for pre-positionable media content is predicted, embodiments can schedule transmission of at least a portion of the media content over one or more of the preceding uncongested beams for storage local to the user device, thereby pre-positioning the content at the client prior to reaching the congested beam.
The present disclosure is directed toward systems and methods for interacting with portions of digital video within a social networking system. For example, systems and methods described herein enable a user to select a portion of a digital video and share or like just the portion of the digital video, rather than the entire digital video. The present disclosure is also directed toward systems and methods for identifying viral portions of a digital video within a social networking system. For example, systems and methods described herein analyze social networking activity related to portions of a particular digital video to identify one or more viral portions of the digital video. In response to identifying one or more viral portions, systems and methods provide an indication of, or otherwise share, the one or more viral portions during playback of the digital video.
A system for communicating media is disclosed. Such a system may include, for example, a media broken into a plurality of independent segment files that may represent sequential portions of the media. One of the segment files can be encoded to have a format that is different than the encoded format of another one of the segment files. The formats may be chosen to allow outputting of information in the segments at different rates. A list may include network addresses for the segment files, and a content delivery system may be deployed to distribute media content to remotely located requesting devices by sending the segment files in response to requests for the segment files.
A computer-implemented method includes receiving by one or more computer systems, a request from a client system of a consumer for a live, real-time video having specified attributes of a performance embedded in the live, real-time video; searching by the one or more computer systems a database of attributes of performances associated with live, real-time videos; and causing by the one or more computer systems a connection between the client system of the consumer with a system of a provider of a live, real-time video captured performance based on the specified attributes included in the request for the live, real-time video.
Methods, apparatus, systems, storage media, etc., to perform media monitoring for mobile platforms using messaging associated with adaptive bitrate streaming are disclosed. Example media monitoring methods disclosed herein include accessing a request received from a first server of an audience measurement entity (AME) requesting network log information corresponding to a first adaptive bitrate streaming uniform resource locator (URL) included in a first message sent by a mobile platform to a second server to request delivery of first streaming media according to an adaptive bitrate streaming protocol. Disclosed example methods also include retrieving the network log information corresponding to the first adaptive bitrate streaming URL from a third server of a service provider providing network access for the mobile platform, and returning the network log information to the first server of the AME in response to the request.
Cloud protection techniques are provided. A security breach is detected in a source cloud environment. An enterprise system processing in the source cloud environment is immediately locked down and is dynamically migrated to a target cloud environment. While the enterprise system is migrating, the source cloud environment creates a fake environment with fake resources within the source cloud environment to dupe an intruder having access as a result of the security breach. Metrics and logs are gathered with respect to activities of the intruder within the source cloud environment.
Customer communication security vulnerabilities are resolved. A usage history is obtained for a user device including communications involving the user device. Pattern recognition is applied to the usage history. The user device is assigned with a risk classification from a predetermined set of possible risk classifications, based on the pattern recognition. A vulnerability on the user device is remedied when the risk classification exceeds a predetermined threshold.
In a system for detecting and optionally blocking packets from an attacker, an improved multi-hash process, in which rate information for one or more packet signatures is computed by individual modules, where each module corresponds to a different hash function, and is shared across the modules to determine maximum observed rates for the signatures within a specified observation window. A moving average of the maximum rates can be computed across several observation windows, to optimize false negative and false positive detections. The modules may designate certain packets as potentially harmful and/or may block such packets, according to a corresponding maximum rate and specified threshold.
According to one embodiment, an apparatus comprises a processor and memory. Communicatively coupled to the processor, the memory includes a detection module that, when executed, conducts an analysis of a received object to determine if the received object is associated with a malicious attack. The detection module is configurable, and thus, certain capabilities can be enabled, disabled or modified. The analysis is to be altered upon receipt of a configuration file that includes information to alter one or more rules controlling the analysis conducted by the detection module.
In one example in accordance with the present disclosure, a method may comprise establishing, by a boot environment, a secure connection on a special port. An authentication key for the secure connection is preloaded into the boot environment. The method may comprise verifying, by the admin node, that the new node is marked for installation and transmitting, by the admin node, a secure key to the new node over the secure connection. The method may comprise requesting, by the boot environment, a secure bundle from the admin node, the secure bundle corresponding to the new node. The method may comprise decrypting, by the boot environment, the secure bundle using the secure key and requesting, by the boot environment, an installation image for the new node. The secure bundle contains secure information that is not included in the installation image.
Systems and methods may provide for receiving web content and determining a trust level associated with the web content. Additionally, the web content may be mapped to an execution environment based at least in part on the trust level. In one example, the web content is stored to a trust level specific data container.
Systems and methods are provided for persistent cross-application mobile device identification. A mobile device may have a plurality of sandboxes in memory containing applications. The mobile device may have a shared storage which may accessible by applications from different sandboxes. A storage location identifier may be used to access information in shared storage. A universal device identifier may be stored in the shared storage to identify the mobile device and may be accessible by multiple applications and updates to applications. The universal device identifier may be used to track the mobile device for advertising, fraud detection, reputation tracking, or other purposes.
Embodiments of the invention is directed to a method for connecting a device to a network. An example method comprises providing a device assigned with a device identifier and an asymmetric cryptographic key pair that includes a public key and a private key. The device stores the private key on a memory thereof. The device is provided with information as to the assigned device identifier and/or the public key. This information is detectable by a detector so as to be transmissible to a server for it to identify the device identifier and the public key assigned to the device.
A method for mutual authentication in an RFID system comprising an RFID reader and an RFID tag, the method comprising requesting an identification from the tag, receiving the identification, using the received identification to select a password associated with the identification, generating a password key based on the selected password, encrypting the selected password using the password key, and transmitting the encrypted password to the tag.
A domain name registrar may suggest and/or allow a user to select one or more domain names registered to the user for on demand multifactor authentication. The user may select one or more protected activities that trigger the enhanced security for the selected domain name(s). The user may also enter a plurality of authenticatees, contact information for the authenticatees and a minimum number of authenticatees required to approve the one or more protected activities. The user and/or authenticatees may also enter at least two authentication methods for each authenticatee and corresponding correct responses. The selected domain names are thus protected from the protected activities until approved by a minimum number of authenticatees using at least a first authentication method and a second authentication method selected from different groups of “what you know,” what you have” and “what you are” authentication methods.
According to an example embodiment of the present invention, there is provided an apparatus comprising at least one secure element configured to store at least two credentials, and at least one processing core configured to cause a first one of the at least two credentials to be employed to decrypt a first encrypted content to produce a first decrypted content, to cause a second one of the at least two credentials to be employed to decrypt a second encrypted content to produce a second decrypted content, and to cause the first decrypted content be provided to a first rendering device over a first secured tunnel connection, wherein an endpoint of the first secured tunnel connection resides in the apparatus.
The invention relates to a method for transmitting data from a first terminal, called a sender terminal (TermE), to a second terminal, called a receiver terminal (TermR), the method being characterized in that it comprises: a step (100) for obtaining a piece of current time data (DTC); a step (110) for determining a piece of transmission time data (DTC) as a function of the piece of current time data (DTC) and at least one predetermined parameter; a step (120) for obtaining a piece of data to be encrypted (DaCh) from at least one piece of data to be transmitted (DaTr) and from at least one piece of current time data (DTC); a step (130) for encrypting, by means of an encryption key (KeyC), said preliminarily obtained piece of data to be encrypted (DaCh), this step delivering a piece of encrypted data (DCh); a step for transmitting said piece of encrypted data (DCh) as a function of said piece of transmission time data (DTT).
Embodiments include receiving one or more packets of a Wi-Fi calling session via a secure tunnel from a user device, where the user device is connected to a source network via a Wi-Fi access point. Embodiments also include determining whether the Wi-Fi calling session is a threat based, at least in part, on identifying an anomaly of at least one packet of the one or more packets. An action can be taken if the Wi-Fi calling communication is determined to be a threat. More specific embodiments include determining the at least one packet is associated with the Wi-Fi calling session by correlating information in the packet with control plane data of the Wi-Fi calling session. Further embodiments can include intercepting the one or more packets in a second secure tunnel established between an evolved packet data gateway and a service provider network associated with the user device.
A technology is described for applying an encrypted customer security rule set to an application firewall. An example method may include obtaining an encrypted customer security rule from a shared data store for use by an application firewall that operates at an entry point to a computing service environment that utilizes security rules to monitor, filter, and manipulate network traffic. The customer encryption key used to decrypt the encrypted customer security rule in volatile computer memory may be obtained from a key data store and the encrypted customer security rule may be decrypted in the volatile computer memory using the customer encryption key, thereby forming a corresponding unencrypted customer security rule in the volatile computer memory. A volatile computer memory location containing the unencrypted customer security rule may be provided to the application firewall to enable the unencrypted customer security rule to be applied by the application firewall.
Some embodiments of the invention introduce cloud template awareness in the service policy framework. Some embodiments provide one or more service rule processing engines that natively support (1) template-specific dynamic groups and template-specific rules, and (2) dynamic security tag concepts. A service rule processing engine of some embodiments natively supports template-specific dynamic groups and rules as it can directly process service rules that are defined in terms of dynamic component groups, template identifiers, template instance identifiers, and/or template match criteria. Examples of such services can include any kind of middlebox services, such as firewalls, load balancers, network address translators, intrusion detection systems, intrusion prevention systems, etc.
A field device firewall includes a processor that runs a cyber-protection algorithm, and a memory storing a list of device types, requests and commands. The field device firewall is adapted for use in a communications network between a field network communication interface coupled to a field device and a process controller. The field device firewall does not support any native communications with the field device and also lacks an IP address. The cyber-protection algorithm implements comparing information in a received packet to the stored list, allowing transmission of the received packet to the field device if the comparing determines the information is on the stored list, and blocking transmission of the received packet to the field device if the comparing determines the information is not on the stored list.
A method, a device and a storage medium for processing a communication service in a circuit switch domain are provided. The method may include: judging, when a communication service being currently processed by a communication terminal is a voice call service or a short message service in a circuit switch domain, whether a switching condition for switching the communication service onto a real-time communication tool in a packet switch domain of the communication terminal is met; if it is met, switching the communication service onto the real-time communication tool in the packet switch domain of the communication terminal.
Organizing a participant list includes maintaining a participant list of users of an electronic communications system to be used by a first user of the electronic communications system. Communications strengths between the first user and each of the users included in the participant list are determined. The users included in the participant list are organized based on the corresponding communications strengths. Communications strengths may be determined for users included in a group within a participant list, and the users within the group may be organized within the group based on communications strength. An additional group in the participant list in which some or all of the users included in the participant list are organized based on communications strength may be provided.
Disclosed are methods, circuits, devices, systems and associated computer executable code for providing Domain Name Resolution functionality to a data client device accessing a networked data resource through an access point of a data communication network. According to some embodiments, an access point or node of a data communication network may be integral or otherwise functionally associated with a conditional domain name system (CDNS), which CDNS may include a local cache of conditional DNS records.
Approaches are described for security and access control for computing resources. Various embodiments utilize metadata, e.g., tags that can be applied to one or more computing resources (e.g., virtual machines, host computing devices, applications, databases, etc.) to control access to these and/or other computing resources. In various embodiments, the tags and access control policies described herein can be utilized in a multitenant shared resource environment.
The technology disclosed includes a method for initiating a web service through an action item within a post in a social media network. A request is received from a user for a post to a social network. The request includes a definition for an action-link-group, which comprises one or more action links. The post is created to include the action-link-group and is then uploaded to the network. Upon receiving a selection of an action link within the action-link-group, an action item associated with the action link is performed.
A computer-implemented method is described. The method includes a computing system receiving an item of digital content from a user device. The computing system generates one or more labels that indicate attributes of the item of digital content. The computing system also generates one or more conversational replies to the item of digital content based on the one or more labels that indicate attributes of the item of digital content. The method also includes the computing system selecting a conversational reply from among the one or more conversational replies and providing the conversational reply for output to the user device.
Threaded conversation channel with a temporarily exclusive conversation. One embodiment includes a data processing system implementing a threaded conversation channel. The data processing system includes a network interface coupled to a network. The data processing system also includes a memory for storing instructions and an electronic processor coupled to the network interface and the memory. The electronic processor is configured to execute the instructions to generate the threaded conversation channel and to receive conversation parameters including a recipient, a delivery time, and initial message content. The electronic processor is also configured to post a temporarily exclusive conversation based on the conversation parameters that is hidden from at least a first user of the temporarily exclusive conversation and viewable by at least a second user. The electronic processor is also configured to reveal, to the first user at the delivery time, the temporarily exclusive conversation on the threaded conversation channel.
A computer system comprises computer storage holding a plurality of code modules, one or more processors and a communication system. The one or more processors are configured to execute the code modules and thereby implement the bots. The communication system comprises a message relay and an anonymized identifier generator. The message relay is configured to receive a message comprising an identifier of a user and an identifier of a target one of the bots. The anonymized identifier generator is configured to generate an anonymized identifier of the user unique to the target bot, by applying an anonymization function to the user identifier and the bot identifier in the message. The message relay is configured to transmit to the target bot a version of the message, which comprises the anonymized user identifier and does not include the user identifier, wherein the user identifier is not rendered accessible to the target bot.
A first computing device is provided for transmitting one or more volumes via a secured connection. The first computing device includes a volume service that is executable by one or more processors and is configured to instruct a cloud computing device to generate a worker virtual machine. The volume service is also configured to provide, via a connection different from the secured connection, a random number to the worker virtual machine. The volume service is further configured to instruct the cloud computing device to generate one or more target volumes associated with the cloud computing service and to associate the one or more target volumes with the worker virtual machine. The volume service is further instructed to provide, irrespective of the content type of the volumes and the size of the volumes, the one or more volumes to the worker virtual machine via the secured connection.
In a computer-implemented method for reducing delay of bursty data transmission in a network employing a congestion control protocol, data is accessed that is to be periodically transmitted over a network employing a congestion control protocol. The data is to be periodically transmitted with a high burst rate followed by an idle period. The congestion control protocol progressively increases a data transmission rate during a data transmission rate increase period invoked immediately following a predetermined idle period. Prior to transmitting the data, priming data is transmitted during at least a portion of the idle period until the congestion control protocol progressively increases the data transmission rate to a desired transmission rate. The data is transmitted at the desired transmission rate.
A method, system, and computing device configured for invoking software application methods of remote JAVA objects are provided. Therein, a client sends at least one remote JAVA application object request to at least one of a plurality of JAVA application server instances. A software defined network (SDN) application located in the network path between the client and the plurality of JAVA application server instances receives the remote JAVA application object request, and forwards the remote JAVA application object request to the plurality of JAVA application server instances. Then, the SDN application generates at least one remote JAVA application object pool based on object references in response to the at least one forwarded remote JAVA application object request. When the SDN application receives a JAVA application method invocation request sent it delegates the remote JAVA application method invocation request to one or more of the plurality of JAVA application server instances.
Some embodiments provide a novel method for load balancing data messages that are sent by a source compute node (SCN) to one or more different groups of destination compute nodes (DCNs). In some embodiments, the method deploys a load balancer in the source compute node's egress datapath. This load balancer receives each data message sent from the source compute node, and determines whether the data message is addressed to one of the DCN groups for which the load balancer spreads the data traffic to balance the load across (e.g., data traffic directed to) the DCNs in the group. When the received data message is not addressed to one of the load balanced DCN groups, the load balancer forwards the received data message to its addressed destination. On the other hand, when the received data message is addressed to one of load balancer's DCN groups, the load balancer identifies a DCN in the addressed DCN group that should receive the data message, and directs the data message to the identified DCN. To direct the data message to the identified DCN, the load balancer in some embodiments changes the destination address (e.g., the destination IP address, destination port, destination MAC address, etc.) in the data message from the address of the identified DCN group to the address (e.g., the destination IP address) of the identified DCN.
A first switch in a MPLS network receives a plurality of packets. The plurality of packets are part of a pair of flows. The first switch performs a packet prediction learning algorithm on the first plurality of packets and generates packet prediction information. The first switch communicates the packet prediction information to a Network Operation Center (NOC). In response, the NOC communicates the packet prediction information to a second switch within the MPLS network utilizing OpenFlow messaging. In a first example, the NOC communicates a packet prediction control signal to the second switch. In a second example, a packet prediction control signal is not communicated. In the first example, based on the packet prediction control signal, the second switch determines if it will utilize the packet prediction information. In the second example, the second switch independently determines if the packet prediction information is to be used.
Examples are disclosed for forwarding or receiving data segments associated with a large data packets. In some examples, a large data packet may be segmented into a number of data segments having separate headers that include identifiers to associate the data segments with the large data packet. The data segments with separate headers may then be forwarded from a network node via a communication channel. In other examples, the data segments with separate headers may be received at another network node and then recombined to form the large data packet at the other network node. Other examples are described and claimed.
In one embodiment, a method is described. The method includes receiving a network communication at a first network device coupled to a first network and a second network, determining whether to forward the network communication into the first network over a logical connection, and, if the network communication is to be forwarded into the first network over the logical connection, forwarding the network communication into the first network over the logical connection. The network communication comprises a first network address in the second network that is associated with a second network device coupled to the second network. The logical connection is associated with a second network address in the second network. The determining is based, at least in part, on a determination, as to whether the first network device and the second network device are coupled to the logical connection, that uses the first network address and the second network address.
An object of the present invention is to generate a clock also before reception of a packet in a reception device. A reception device has: a storage unit storing a true time-stamp included in a received packet including audio data and the true time-stamp expressing reproduction time of the audio data; a timer counting time; a dummy time-stamp generation unit generating a dummy time-stamp as a false time-stamp; a comparator comparing time based on the true time-stamp stored in the storage unit or the dummy time-stamp and time indicated by the timer; and a clock generation unit generating a clock in accordance with a comparison result of the comparator. The comparator performs comparison using the dummy time-stamp until a predetermined condition is satisfied and, after the predetermined condition is satisfied, performs comparison using the true time-stamp.
There is disclosed a telemetry monitoring apparatus for remotely monitoring a plurality of users, such as firefighters, working in a hazardous environment. The apparatus comprises a plurality of portable devices, each arranged to be associated with breathing apparatus worn by a user, and at least one central monitoring station onto which portable devices can be logged on and monitored. The portable devices are arranged to transmit a logon message including an identifier identifying either the user or the portable device.
A data registration system (1) includes a terminal (20), a storage (10), and a server (30) communicable one another via a network. The terminal (20) executes check program (11) stored in a first area (P) of the storage (10) to function as a data receiving unit (21), a format checking unit (22), a data storing unit (23), and an alerting unit (24). The format checking unit (22) checks whether or not the format of data received by the data receiving unit (21) is correct. When the format of the data is correct, the data storing unit (23) stores this data in a second area (D1 to Dn) of the storage (10). An executing unit (32) of the server (30) executes a process to the data which is stored in the second area (D1 to Dn) of the storage (10) and which has the correct format.
Aspects of the subject disclosure may include, for example, a method comprising providing services over a network to a device, and constructing device capability and usage profiles. A level of service quality for the device is adjusted by adjusting a latency criterion regarding connection of the device to the network; adjusting a speed of transmissions to or from the device; and altering a routing of transmissions to or from the device. The network can be partitioned so that the adjusted service quality level is provided by a network portion having a predetermined level of resources. The adjusted service quality level can comprise a first level while the device is active and a second level while the device is inactive; the first level is higher than the second level. The first and second levels are lower than a service quality level provided by another network portion. Other embodiments are disclosed.
Embodiments are directed to monitoring network traffic over a network. A monitoring engine may monitor flows of network packets in the network. The monitoring engine may determine an observation port that provided the network packets. The monitoring engine may determine primary network packets provided by an authoritative observation port based on which observation port provided the network packets and provide them to an analysis engine. The monitoring engine may discard a remainder of the network packets that may be associated with non-authoritative observation ports. The analysis engine may analyze the one or more primary network packets.
Apparatus and methods are provided for managing a plurality of user devices. In one exemplary embodiment, a unified user interface is provided which is configured to display to a user status information and frequency of use information regarding a plurality of health monitoring devices associated to the user. Such a unified interface assists the user in building healthy habits, meeting health-related goals, and ensuring that the user's devices are well maintained. The display is derived from information obtained and processed at a management entity in communication with the plurality of health monitoring devices.
In one or more embodiments, one or more systems, methods, and/or processes may determine one or more auxiliary edges that bypass at least one vertex of vertices that represent physical nodes of a network domain; evaluate at least one edge, that includes the one or more auxiliary edges and that interconnect the vertices, to evaluate a portion of the vertices that excludes the at least one vertex that was bypassed to identify at least one vertex that is associated with at least one service function of a service function chain request specifying service functions to be performed via at least a portion of physical nodes of network domains; and configure a first physical node of the physical nodes of the network domain and associated with the at least one vertex that is associated with the at least one service function to process data via the at least one service function.
Aspects of the present disclosure involve systems, methods, computer program products, and the like, for implementing a virtual service control point in a telecommunications network. In one embodiment, the system and methods involve implementing the functions of a service control point (SCP) device on one or more computing devices, such as application servers of the network, of the telecommunications network to create a virtual service control point device. In one embodiment, the virtual SCP may translate toll-free communications, such as 8xx based telephone communications, into a destination address associated with a customer of the network. In addition to resolving communications into a destination address or number, a virtual SCP instantiated in a network may provide one or more routing rules or features for such communications to a customer.
A Network Function Virtualization (NFV) Software Defined Network (SDN) controls NFV resources consumed by Virtual Network Functions (VNFs) that support a data service. An NFV Infrastructure (NFVI) executes SDN application VNFs, SDN controller VNFs, and SDN virtual Switches (vSWs) to support the data service. The NFVI responsively transfers SDN Key Performance Indicators (KPIs). An NFV Management and Orchestration (MANO) system processes the SDN KPIs to generate VNF control data to darken one of the SDN VNFs. The NFV MANO system processes the VNF control data to generate and transfer NFV control data to darken the SDN VNF. The NFVI darkens the SDN VNF responsive to the NFV control data by restricting access to NFVI hardware for the SDN VNF.
Examples provided relate to adding a network unit to a management group. An example method includes receiving a numeric code on a first network unit from a button on a front panel of the first network unit. The numeric code is received on a second network unit using a button on a front panel of the second network unit. The first network unit is added to the management group of the second network unit.
A first node stores therein accessed-area information that indicates a first area included in a storage area assigned to a target process, the first area having been accessed by the target process for a latest predetermined period of time. The first node stops the target process when an instruction to migrate the target process is received, transmits, to a second node, state information that indicates a state of the target process when the target process is stopped, and transmits first data stored in a first area to the second node, on the basis of the accessed-area information. The second node receives the state information and the first data from the first node, generates the target process on the basis of the state information, and restarts the target process using the first data.
A configuration unit of a communication device which communicates a datagram with a configuration request to a configuration server in order to configure a communication device within an industrial automation system, wherein the configuration server allocates to the communication device, in response to the configuration request, at least one first topological device name component assigned to a spatial or hierarchical arrangement of the configuration server, each forwarding distribution unit adds a further topological device name component assigned to a spatial or hierarchical arrangement of the respective forwarding distribution unit, and the configuration unit of the communication device generates the device name thereof from the topological device name components and a name component that is unique within the subnetwork of the device.
Embodiments of the invention relate techniques of implementing role-driven notification. The techniques can include determining a location of a role in a role hierarchy and a corresponding location of a first notification template in a notification template hierarchy. The techniques can also include identifying one or more child roles of the role corresponding to the user and one or more child notification templates of the notification template corresponding to the user. The techniques can include generating a second notification template, the second notification template including the one or more rules included in each of the one or more child notification templates and sending a notification for the user based on the second notification template.
A method to assist with decision making, according to which a plurality of information sources, presumed to be useful for analyzing a situation, are recorded in a database of a device, including a digital processing system with display means and interface means in order to perform interactions on information containers and/or on contents of the information containers, presented to the operators in visual form by the display means. Every interaction of an operator with an information container is stored by the digital processing system and is interpreted so as to identify an operation on the corresponding information sources. The device establishes a list of information containers of the database that were not the subject of any interaction during the work session and information sources of the database that were not the subject of any operation during the work session.
A segment-based approach for fast fourier transforms of input signals is provided for the generation of baseband signals. A FFT is performed individually for each of the segments from the input signal and the FFT result from each segment is accumulated to provide a final FFT for an input signal symbol. After the samples are received for one segment, a FFT can be performed to generate an intermediate FFT result while samples for the additional segment(s) are received. The system accumulates the intermediate result from the segments into a final FFT result that can be used to generate the baseband signal. Segment-based processing of an input signal can provide faster and more efficient processing to generate a baseband signal. Segment-based processing can also decrease the required size of the input buffers for antennas.
Disclosed is a synchronization signal receiving method comprising a step of respectively receiving, from a plurality of base stations, a plurality of synchronization signals generated by using a predetermined repetition frequency, sequence, and phase pattern vector, measuring a start timing of a frame, a sequence index, and an index of the phase pattern vector by using the plurality of synchronization signals with respect to each of the plurality of base stations, selecting the base station having the highest correlation value calculated as a result of the measurement among the plurality of base stations, and establishing a connection with the selected base station, wherein the phase pattern vector repeatedly changes the phase of the sequence at the repetition frequency.
The method of phase modulating a carrier wave involves creating a set of signals sh(t) constituted by a carrier wave of frequency fC and of phase φ(t)=hφ0(t) that is modulated in time t in such a manner that sh(t)=cos(2πfCt+hφ0(t)), where h is an integer and where φ0(t)=2 arctan((t−t0)/w0). The modulation corresponds to a single phase pulse centered on a time t0 of characteristic duration w0 that is positive, and incrementing the phase of the signal sh(t) by the quantity h2π, in such a manner as to generate a single sideband frequency spectrum directly. The carrier wave may be of electromagnetic type or of acoustic type. The method applies in particular to transporting binary information by single sideband phase coding, to generating single sideband orthogonal signals, to detecting single sideband phase coded multiple-level digital signals, to transmitting single sideband phase coded binary signals in-phase and out-of-phase, and to single sideband combined amplitude-and-phase modulation.
For example, an apparatus may include one or more processors comprising circuitry to cause a first wireless device to generate a wakeup packet comprising a payload first wireless device to generate a wakeup packet comprising a payload comprising at least one payload field modulated according to an On-Off keying (OOK) modulation, the payload field comprising a sequence of a plurality of codes to encode binary bit values of the payload field according to an encoding scheme having a code rate less than one, a first code of the encoding scheme representing a binary bit value of “0” comprising a first sequence of two or more bits comprising at least one bit having a value of “1”, and a second code of the encoding scheme representing a binary bit value of “1” comprising a second sequence of two or more bits comprising at least one bit having a value of “1”; and to transmit the wakeup packet to a second wireless device.
A high performance equalization method is disclosed for achieving low deterministic jitter across Process, Voltage and Temperature (PVT) for various channel lengths and data rates. The method includes receiving input signal at front end of a receiver upon passing through a channel, generating with an eye-opening monitor circuit a control code based on channel conditions, and equalizing with a continuous-time linear equalization equalizer (CTLE) circuit the input signal based on the control code such that the eye-opening monitor circuit and the CTLE circuit are biased based on their corresponding replica circuits, and the control code is generated in a feedforward configuration.
An improved receiver design implements a practical method for modeling users in SIC turbo loop multiuser detection architectures, wherein in each loop unsubtracted estimation errors from previous loops are used to appropriately scale the error covariance matrix for each user, thereby accurately representing the remaining residual interference in the data stream for each desired user. The effect of estimation errors in previous interference cancellation operations is thereby minimized, and symbol estimations in successive turbo loops are improved, for example during multiuser MMSE, multiuser MMSE with interference rejection combining (MMSE-IRC), sample matrix inversion (SMI), or any of their adaptive variants (least mean-square, recursive least square, Kalman filter etc.). The estimated residual symbol energy can be computed per symbol, and then applied to entire data streams, to groups of symbols, or to each symbol separately.
Described is an apparatus which comprises: a Variable Gain Amplifier (VGA); a set of samplers to sample data output from the VGA according to a clock signal; and a Clock Data Recovery (CDR) circuit to adjust phase of the clock signal such that magnitude of a first post-cursor signal associated with the sampled data is substantially half of a magnitude of a primary cursor tap associated with the sampled data.
A computer cluster system includes a plurality of computer groups each having a plurality of computer nodes. For each of the computer groups, the computer nodes cooperatively form a first ring topology, and one of the computer nodes serves as a first-ring master node of the first ring topology. The first-ring master nodes of the first ring topologies cooperatively form a second ring topology, and one of the first-ring master nodes serves as a second-ring master node of the second ring topology.
Embodiments herein relate to recognition of an appliance state based on sensor data and determination of a response based at least in part on the appliance state. In various embodiments, an apparatus to recognize an appliance state may include a sensor data module to identify sensor data in one or more signals relating to data from one or more sensors associated with an appliance, an appliance state recognition module to determine an appliance state of the appliance based at least in part on the sensor data, a response module to determine a response based at least in part on the appliance state, and a transmission module to send the response to at least one of an appliance controller for the appliance or a presentation device. Other embodiments may be described and/or claimed.
To this end a cable is provided for tandem communication and power transmission. The cable has a plurality of twisted pair conductors, a jacket surrounding said twisted pair conductors, and at least one active cooling element. The at least one active cooling element is configured to provide a thermoelectric cooling effect to the cable when one or more of said plurality of twisted pairs are employed to transfer electrical power in a power over Ethernet application.
Techniques for enabling cloud authentication of Layer 2-connected member devices via an IP-connected active device are provided. In one set of embodiments, the member device can transmit, to the active device, a request to authenticate the member device with a cloud management platform. The member device can further receive, from the active device, an encrypted nonce generated by the cloud management platform in response to the request, where the encrypted nonce is encrypted using a public key of the member device. The member device can decrypt the encrypted nonce using a private key of the member device to generate a decrypted nonce and can transmit the decrypted nonce to the active device. The member device can then receive, from the active device, a token generated by the cloud management platform indicating that the member device has been authenticated by the platform.
Apparatus and method for data security in a data storage device. In some embodiments, an alternating pattern is written to a magnetic recording medium as a sequence of symbols at a selected clock rate. A repeatable magnetic signature is generated by reading the alternating pattern from the medium, the magnetic signature having relatively weak entropy at boundaries of the symbols. A multi-bit digital sequence is extracted from the repeatable magnetic signature, the digital sequence having relatively strong entropy. The digital sequence is stored in a separate memory coupled to the medium. Access to data stored on the medium is authenticated responsive to the digital sequence stored in the separate memory.
An encryption apparatus includes a table generator configured to generate a key table based on each of a plurality of encryption keys, the plurality of encryption keys having different attributes, generate a key-independent table independent of the plurality of encryption keys, and generate an encryption algorithm based on the key table and the key-independent table; and a transmitter configured to transmit the key table and the key-independent table to a client terminal, wherein the table generator and the transmitter are implemented by using at least one hardware processor.
As disclosed herein a computer system for secure database backup and recovery in a secure database network has N distributed data nodes. The computer system includes program instructions that include instructions to receive a database backup file, fragment the file using a fragment engine, and associate each fragment with one node, where the fragment is not stored on the associated node. The program instructions further include instructions to encrypt each fragment using a first encryption key, and store, randomly, encrypted fragments on the distributed data nodes. The program instructions further include instructions to retrieve the encrypted fragments, decrypt the encrypted fragments using the first encryption key, re-encrypt the decrypted fragments using a different encryption key, and store, randomly, the re-encrypted fragments on the distributed data nodes. A computer program product and method corresponding to the above computer system are also disclosed herein.
Examples of the present disclosure describe systems and methods for partially encrypting conversations using different cryptographic keys. Messages communicated during a conversation session may be encrypted using a cryptographic key. Other conversation participants may then decrypt the messages using the cryptographic key. During the conversation, an event may occur that causes a new cryptographic key to be generated. The conversation participants may then use the new cryptographic key when communicating. As such, previously-encrypted messages may be inaccessible to new members that do not have the old cryptographic key, while newly-encrypted messages may be inaccessible to former members that do not have the new cryptographic key. An isolated collection may store the messages and related cryptographic keys. Relationships may exist within the isolated collection, such that messages may be related to one another and messages may also be related to the cryptographic keys used to encrypt them.
Various technologies for performing discrete-variable (DV) quantum key distribution (QKD) with integrated electro-optical circuits are described herein. An integrated DV-QKD system uses Mach-Zehnder modulators (MZMs) to modulate a polarization of photons at a transmitter and select a photon polarization measurement basis at a receiver. A transmitter of a DV-QKD system further uses phase shifters to correct for non-idealities of the MZM in output provided to a polarization beam splitter. A receiver of a DV-QKD system can use phase shifters between a polarization beam splitter and an MZM to correct for non-idealities of the polarization beam splitter and the MZM on the receiver side.
The present invention relates to a multiple encrypting method, for encrypting a file and/or a protocol and generating encryption keys. Comprising the steps of: uploading at least one of a file and a protocol by a file uploading unit; generating random numbers by a random number generation unit; arranging the random numbers to form at least one key and at least one initialization vector respectively by a key generation unit and an initialization vector generation unit; encrypting the file and/or the protocol from the file uploading unit via using AES encryption by an encryption unit, so as to generate an encrypted file and/or an encrypted protocol; saving the key and the initialization vector respectively in a first storage unit and a second storage unit; Repeating the above steps at least one time.
A clock divider comprises a clock delay line that comprises a plurality of delay elements, a clock delay selector coupled to the clock delay line and configured to select one of the plurality of delay elements and a bit pattern source coupled to the clock delay selector. The clock delay line is configured to generate a modulated divided clock signal with a suppressed fundamental spectral component.
Systems and methods for outer loop Link Adaptation (LA) with bundled feedback are disclosed. In some embodiments, a method of operation of a radio access node in a cellular communications network to provide outer loop LA includes receiving, from a wireless device, a bundled feedback acknowledging reception of data by multiple Hybrid Automatic Repeat Request HARQ) processes at the wireless device. The method also includes, in response to receiving the bundled feedback, updating an outer loop LA parameter based on the number of HARQ processes in the HARQ processes and/or a metric indicative of channel correlation for a channel from the radio access node to the wireless device.
Embodiments of the application provide a method for encoding data in a wireless communication network. A communication device obtains K data bits and a target code length M. The device determines a mother code length N1. The device encodes the K data bits to obtain an encoded bit sequence of code langth N1. The mother code length N1 is determined according to a minimum value of values Na, Nmax and N. The values Na, Nmax and N satisfy the following conditions: (1) the value Na satisfies with: a rate R1 is less than or equal to a preset rate, wherein the rate R1 is determined according to the value K and the value Na; (2) the value Nmax is a preset maximum mother code length, and Nmax is an integer power of 2; and (3) the value N satisfies with M≤N*(1+δ), and δ is a preset constant.
This invention presents methods for signal detection and transmission in MU-MIMO wireless communication systems, for inverse matrix approximation error calculation, for adaptively selecting the number of multiplexed UEs in a MU-MIMO group, for adaptively choosing a modulation and channel coding scheme appropriate for the quality of MU-MIMO channels with the approximation error of matrix inverse being incorporated.
A passive optical network system having a node that is optically coupled to optical line terminals (OLTs), and that is optically coupled to optical network units (ONUs). The node includes at least one fiber link module (FLM), each FLM including an upstream multiplex conversion device (MCD), and a downstream MCD. The upstream MCD receives an upstream optical signal from the ONUs, converts the upstream optical signal to an upstream electrical signal, and transmits a regenerated upstream optical signal to the OLTs. The downstream MCD receives a downstream optical signal from the OLTs, converts the downstream optical signal to a downstream electrical signal, and transmits a regenerated downstream optical signal to the ONUs.
A method and apparatus for transmitting or detecting primary synchronization signal. The receiver receives primary synchronization signal from a transmitter, and detects the sequence used in the received primary synchronization signal by using three root indexes. Here, the primary synchronization signal is generated by using a Zadoff-Chu sequence having one of the three root indexes. The three root indexes comprise a first index and a second index, and a sum of the first index and the second index corresponds to the length of the Zadoff-Chu sequence.
Systems and methods allow LAA LTE equipment to coexist with other services in the unlicensed band such as WIFI or WLAN services. Systems and methods use LTE reference signals in the unlicensed spectrum that are not continuous and can be interrupted by a WIFI signal or other services in the unlicensed band or use a dynamic LAA ON burst or window to provide the LTE reference signals in some embodiments. The systems and methods can detect the presence of LTE signals using a one or more of a number of techniques.
An apparatus is described which uses directly modulated InGaN Light-Emitting Diodes (LEDs) or InGaN lasers as the transmitters for an underwater data-communication device. The receiver uses automatic gain control to facilitate performance of the apparatus over a wide-range of distances and water turbidities.
Described herein are various technologies pertaining to detecting tampering of a seal based upon quantum optical communication via a communications channel comprising the seal. A plurality of pulses of light encoded with random data are transmitted on the communications channel, whereupon they are received and their data values measured. The measured data values of the pulses are then compared to the known transmitted data to determine a correlation statistic between the transmitted and received data values. Tampering with the seal can be detected based upon identifying that the correlation statistic has dropped below a threshold non-tampered level of correlation between transmitted and received values.
A controller configured in combination with a transmitter and a receiver to transmit signals via a second wireless access interface to a communications apparatus operating as a relay node, the signals for transmission to infrastructure equipment by the communications apparatus as if the signals were transmitted by the communications device via a first wireless communications interface, to receive signals from the infrastructure via the first wireless access interface, to determine an additional delay caused by transmission of the signals to the communications apparatus acting as the relay node via the second wireless access interface compared with a time taken which would have been taken to transmit the signals to the infrastructure equipment as if transmitted via the first wireless access interface, and to transmit to the infrastructure equipment an indication from which the infrastructure equipment can derive the determined additional delay for adjusting transmission or reception of the synchronized response.
Embodiments of the present invention provide a channel state information obtaining method and a device, where the method includes: determining, by a base station according to radio resource usage, a special timeslot in a frequency range used for downlink data transmission; sending special-timeslot configuration information to user equipment, where the special-timeslot configuration information is used to configure the user equipment to send the uplink physical signal over a downlink frequency band in the special timeslot; and performing channel estimation according to the uplink physical signal after receiving the uplink physical signal sent by the user equipment, to obtain channel state information. Compared with a technical solution in the prior art in which user equipment obtains channel state information and then feeds back the channel state information to a base station, system overheads caused in obtaining, by the base station, the channel state information are reduced.
Embodiments disclose a method for beam training in a multiuser scenario and an apparatus. The method is applied to beam training performed on multiple responders by an initiator and includes: sending, by the initiator, status information of transmit antennas of the initiator to a first responder of the multiple responders, so that the first responder selects a to-be-used transmit antenna from the transmit antennas according to the status information, where the status information is used to indicate whether the transmit antennas of the initiator are selected; and receiving, by the initiator, feedback information sent by the first responder, and determining, according to the feedback information, the to-be-used transmit antenna selected by the first responder.
The present invention relates to a method for transmitting channel information to a base station in a wireless communication system, and a device therefor, the method comprising the steps of: receiving information on a user equipment (UE) group in which a specific UE is included; receiving, from a representative UE of the UE group, first control information comprising first beam information; determining second beam information on the basis of the first beam information; and transmitting, to a base station, second control information comprising differential information between the determined second beam information and the first beam information.
The present invention relates to a system for controlling energy transmission from a transmitter to at least one device, in particular network device, the system comprising: a controller which is configured to receive feedback information on energy transmission and/or on data transmission from the device and/or another device; and a mapper which is configured to allocate the device to an energy transfer resource based on the feedback information.
In one embodiment, a first device (e.g., a host device or power distribution unit) stores identification information of the first device, and determines, over a power connection, when the first device is in powered connectivity with a second device (e.g., a power distribution unit or host device, respectively). The first device may then communicate, with the second device over the power connection, identification information of at least one of either the first or second device, where the communicated identification information is accessible to a third device (e.g., a server) via a data network due to the communicating over the power connection. In another embodiment, a server may determine, based on the identification information, a physical location of a power distribution unit, and may deduce, based on the physical location of the power distribution unit, that a host device is physically located at the physical location of the power distribution unit.
Aspects of the present disclosure are directed toward apparatuses and methods for time synchronizing between communication nodes of a communications network. In specific embodiments, the apparatus includes nodes having respective clocks circuit and communication circuitry for communicating with other nodes in the network, and the nodes convey or operate on power-related data indicative of power consumption within a power distribution system by communicating the power-related data between communication nodes of the network or system. Each node can provide a time synchronization request to another of the nodes within an interval after being permitted to join into the communications network, and which then results in the node setting the clock circuit to a parameter conveyed from the second node via timing information provided in a uniquely-recognizable data frame as communicated via one of the upper-level layers. The node maintains on-going time synchronization by communicating additional time synchronization requests within predetermined time ranges.
Receiving filter design that reduces out-of-channel interference for APs is disclosed. An AP includes a first radio and a second radio disposed in a body of the AP. The first radio transmits first signals in a frequency band while the second radio receives second signals in the same frequency band. The AP includes an interference mitigation controller that determines a receiving filter for the second radio to mitigate interference between the first radio and the second radio based on the second signals received by the second radio when the first radio transmits the first signals in the frequency band. The interference mitigation controller applies the receiving filter to signals received by the second radio during a time period that the first radio is transmitting signals in the frequency band while the second radio is receiving signals in the frequency band.
An apparatus comprises a system on a chip (SoC). In some embodiments, the SoC includes a power supply circuit, a power management circuit operatively coupled to the power supply circuit, a first wireless communications circuit and a second wireless communications circuit. The first wireless communications circuit is configured to receive an RF signal and is operatively coupled to the power supply circuit and the power management circuit. The first wireless communications circuit has a net radio frequency (RF) power gain no more than unity before at least one of downconversion of the RF signal or detection of the RF signal. The second wireless communications circuit is operatively coupled to the power supply circuit and the power management circuit.
Under one aspect, a method for reducing interference in a received signal can include splitting a received signal into a first portion and a second portion, the received signal comprising a desired signal and an interference signal that spectrally overlaps the desired signal. The method also can include estimating an amplitude A(t) of the first portion as a function of time. The method also can include suppressing at least a portion of the interference signal in the estimated amplitude A(t) to generate an interference suppressed amplitude A′(t). The method also can include delaying the second portion by an amount of time corresponding to the estimation and suppression. The method also can include multiplying the interference suppressed amplitude A′(t) by the delayed second portion to obtain an output having reduced contribution from the interference signal.
A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to generate a Low Density Parity Check (LDPC) codeword by LDPC encoding based on a parity check matrix; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a plurality of modulation symbols, wherein the modulator is configured to map bits included in a predetermined bit group from among a plurality of bit groups constituting the LDPC codeword onto a predetermined bit of each of the modulation symbols.
An encoding apparatus is provided. The encoding includes a low density parity check (LDPC) encoder which performs LDPC encoding on input bits based on a parity-check matrix to generate an LDPC codeword formed of 64,800 bits, in which the parity-check matrix includes an information word sub-matrix and a parity sub-matrix, the information word sub-matrix is formed of a group of a plurality of column blocks each including 360 columns, and the parity-check matrix and the information word sub-matrix are defined by various tables which represent positions of value one (1) present in every 360-th column.
A method of providing, by a controller, a log likelihood ratio (LLR) to a low-density parity check (LDPC) decoder, the method comprising storing, in a non-volatile memory controller, a look-up table for storing LLR values of at least one bit representing a charge state of a cell of the plurality of cells in the memory. The controller determines a cell charge state of the target cell, calculates a value representative of the difference in charge states of the target cell and at least one of a plurality of neighboring cells. The controller compares the calculated value with at least one predetermined threshold value, and sets at least one address bit of an address to the look-up table if the calculated value exceeds the at least one threshold value. The controller extracts a new LLR value from the look-up table, and provides the new LLR value to the LDPC decoder.
Aspects of the present disclosure relate to low density parity check (LDPC) coding utilizing LDPC base graphs. Two or more LDPC base graphs may be maintained that are associated with different ranges of overlapping information block lengths. A particular LDPC base graph may be selected for an information block based on the information block length of the information block. Additional metrics that may be considered when selecting the LDPC base graph may include the code rate utilized to encode the information block and/or the lift size applied to each LDPC base graph to produce the information block length of the information block.
An analog signals generating device comprises a current pump controlled by a control code generated by a module for calculating the digital code with shaping of noise. The calculation module receives as input a digital signal representative of the analog signal to be generated and comprises at least one quantizer and a quantization error compensating stage. The current pump comprises two groups of at least one electric current generator and two groups of at least one switching means, the switching facilities being controlled by the control signal and causing the electric currents to flow between the electric current generators and the inputs of a differential amplifier exhibiting a predominantly capacitive input impedance and connected in series between the two groups of switching means.
A quantum interference device includes an atom cell module including an atom cell in which alkali metal is encapsulated, a light source that emits light adapted to excite the alkali metal, and a heater that heats the atom cell and the light source, a package that houses the atom cell module, and a controller adapted to control drive of the heater so that the light source becomes at a set temperature, R≤(Tv−Tout)/Qv is satisfied, where R [° C./W] is a thermal resistance between the atom cell module and the package, Tv [° C.] is the set temperature, Tout [° C.] is an upper limit value of a usage environmental temperature set to a value lower than the set temperature, Qv [W] is an amount of heat generation of the light source.
Systems and methods for providing improved linearity and reduced noise in a digital phase-locked loop in which a differential time-to-digital converter is implemented. Digital-to-time converters are used for adjusting a reference clock signal based on a fractional change signal and for adjusting a feedback signal based on another fractional change signal. Each fractional change signal is centered about a midpoint, M, and offset from the midpoint by a fraction, x, such that the fractional change signals can be described as (M+x) and (M−x), respectively. By implementing a differential time-to-digital converter, the sum of delays in each input path is kept constant so that integral non-linearity is improved. Supply sensitivity is also reduced, as the same supply is applied to both differential input paths. Since the differential delay can be both positive and negative, the delay range of a differential digital-to-time converter is half that of a single input digital-to-time converter.
A bias circuit is provided that is configure to control the bias for a diode-connected transistor operating in the sub-threshold region to produce a gate-to-source voltage. A differential tuning voltage derived from the gate-to-source voltage tunes a plurality of varactors.
The present disclosure relates generally to techniques for enhancing adders implemented on an integrated circuit. In particular, arithmetic performed by an adder implemented to receive operands having a first precision may be restructured so that a set of sub-adders may perform the arithmetic on a respective segment of the operands. More specifically, the adder may be restructured so that a sub-adder of the set of sub-adders may concurrently output a generate signal and a propagate signal, which may both be routed to a prefix network. The prefix network may determine respective carry bit(s), which may carry into and/or select a sum at a subsequent sub-adder of the restructured adder. As a result, the integrated circuit may benefit from increased efficiencies, reduced latency, and reduced resource consumption (e.g., area and/or power) involved with implementing addition, which may improve operations such as encryption or machine learning on the integrated circuit.
Devices and methods are provided for monitoring a transient time in a device under test. A circuit includes a transient edge clipper circuit electrically coupled to the device under test. The transient edge clipper circuit is configured to remove voltage levels of a voltage waveform of the device under test which exceed a threshold range to generate a clipped voltage waveform. The circuit also includes logic circuitry electrically coupled to the transient edge clipper circuit. The logic circuitry is configured to generate a time delayed pulse signal representation of the clipped voltage waveform by injecting a predetermined time delay. The circuit also includes a converter circuit electrically coupled to the logic circuitry. The converter circuit is configured to generate a current signal based on the pulse signal representations.
A level shift includes a bias voltage providing circuit, a level shifting circuit and an output switching circuit. The level shifting circuit includes a high level shifting unit and a low level shifting unit. When the high level shifting unit is in a cut-off state, the high level shifting unit further receives a first bias voltage such that the high level shifting unit is in a partially cut-off state, accordingly increasing a response speed of the high level shifting unit. When the low level shifting unit is in a cut-off state, the low level shifting unit further receives a second bias voltage such that the low level shifting unit is in a partially cut-off state, accordingly increasing a response speed of the low level shifting unit. The level shifter of the present application provides a higher response speed.
A method for programming a two-wire sensor having at least two sensor units. The method comprises the following steps of: switching on the at least two sensor units, activating one of the at least two sensor units, capturing operating states of the at least two sensor units; detecting an operating state in which one individual sensor unit is active; and sending a programming command to the detected active sensor unit.
An apparatus for controlling the application of electrical power to a load includes a controller, a controllable high side driver electrically connected to a first electrical terminal of the load, and a controllable low side driver electrically connected to a second electrical terminal of the load. The apparatus also includes a diagnostic circuit configured to sense and identify an open load fault condition, a high-side short circuit to battery fault condition, a low-side short circuit to ground fault condition, a high-side short circuit to ground fault condition, a low-side short circuit to battery fault condition, and a short circuited load fault condition. The diagnostic circuit is also configured to sense and identify a condition wherein none of the open load, high-side short circuit to battery, low-side short circuit to ground, high-side short circuit to ground, low-side short circuit to battery, and short circuited load fault conditions are present.
A clock circuit includes a first latch, second latch, first trigger circuit and clock trigger circuit. The first latch generates a first latch output signal based on a first control signal, an enable signal and an output clock signal. The second latch is coupled to the first latch, and configured to generate the output clock signal responsive to a second control signal. The first trigger circuit is coupled to the first latch and the second latch, and configured to adjust the output clock signal responsive to at least the first latch output signal or a reset signal. The clock trigger circuit is coupled to the first latch and the first trigger circuit by a first node, is configured to generate the first control signal responsive to an input clock signal, and configured to control the first latch and the first trigger circuit based on at least the first control signal.
A signal-switching circuit for use in an electronic system is provided. The electronic system includes a plurality of hardware circuits. The signal-switching circuit includes a control circuit and a switch circuit. The control circuit is arranged to receive a trigger signal generated by a trigger circuit of the electronic system, and change a mode signal generated by the control circuit according to the trigger signal. The switch circuit is arranged to electrically connect transmission signals from one of the hardware circuits to a transmission interface of the electronic system according to the mode signal.
A high order filter circuit is integrated by a plurality of the low order filter circuits. Before correcting the high order filter circuit, switch units may restore the high order filter circuit to the low order filter circuits for correction, and then combine the corrected low order filter circuits to form the original high order filter circuit.
In a band pass filter, a first elastic wave resonator includes a first base board type and a first electrode configuration significantly improved or optimal for frequency characteristics of the first elastic wave resonator, and a second elastic wave resonator includes a second base board type and a second electrode configuration significantly improved or optimal for frequency characteristics of the second elastic wave resonator. A first attenuation pole provided by the first elastic wave resonator and a second attenuation pole provided by the second elastic wave resonator is steeper than if the first elastic wave resonator and the second elastic wave resonator that have different frequency characteristics include electrodes having the same configuration on the same types of base boards.
The subject matter disclosed herein generally relates to audio signal filtering components for an audio signal as it passes through an audio cable from source to loudspeaker, but receives interference from a nearby electrical current. This electrical current includes those from electronics commonly found in cell phones, electrical lines in vehicles, or electrical lines from any nearby source that emits a magnetic field that is then picked up by the audio cable and produces a high-pitched ringing sound. The apparatus described audibly reduces the interference from this electrical current.
An ultrasound circuit comprising a single-ended trans-impedance amplifier (TIA) is described, The TIA is coupled to an ultrasonic transducer to amplify an electrical signal generated by the ultrasonic transducer in response to receiving an ultrasound signal. The TEA is followed by further processing circuitry configured to filter, amplify, and digitize the signal produced by the TIA.
A power amplification system with shared common base biasing is disclosed. A method for power amplification at a controller of a power amplification system comprising a plurality of cascode amplifier sections can include receiving a band select signal indicative of one or more frequency bands of a radio-frequency input signal to be amplified and transmitted. The method may further include biasing a common base stage of each of the plurality of cascode amplifier sections, and biasing a common emitter stage of a subset of the plurality of cascode amplifier sections.
A distributed amplifier (DA) is disclosed. The DA includes a first plurality of inductive elements coupled in series forming a first plurality of connection nodes. The DA also includes a second plurality of inductive elements coupled in series forming a second plurality of connection nodes. The DA further includes a plurality of amplifier cells that each has a main transistor and a cascode transistor coupled into a cascode configuration. The cascode transistor has a current input coupled to a corresponding one of the first plurality of connection nodes. An input transistor has a control terminal coupled to a corresponding one of the second plurality of connection nodes, a current input terminal configured to provide a bias tuning for the DA, and a third current output terminal coupled to a control terminal of the main transistor and configured to provide a separate bias tuning for the DA.
An amplification system can include a bias booster circuit and an amplifier that amplifies an input signal to drive a load. The bias boosting circuit can include a negative bias booster that applies a charge to an input node of the amplifier in response to a negative half-cycle of the input signal that exceeds a boost threshold level. The bias boosting circuit can also include a positive bias booster that discharges the input node of the amplifier during a positive half-cycle of the input signal that exceeds the boost threshold level. The discharging by the positive bias booster is slower than the charging by the negative bias booster to induce a bias voltage increase from a quiescent bias voltage on the input node of the amplifier.
A crystal oscillator device is disclosed. The crystal oscillator device includes: a crystal oscillator including a casing, a crystal piece, a pair of excitation electrodes configured to excite a main vibration, and a pair of sub vibration electrodes configured to excite a sub-vibration; and an alarm generator configured to generate an alarm based on a signal whose amplitude is equal to or less than a reference value, the signal being generated in the sub vibration electrodes.
An I-V measurement method is provided for a solar cell having a collecting electrode on the first surface side of a single-crystalline silicon substrate of a first conductivity type and having a transparent electrode on the outermost surface on the second surface side of the single-crystalline silicon substrate of the first conductivity-type. An electric current is supplied to the solar cell in a state in which flexible metal foil and the transparent electrode are brought into detachable contact with each other such that the flexible metal foil follows undulations of the single-crystalline silicon substrate of a first conductivity type, and the first surface is set as a light-receiving surface. It is preferable that at least on a portion that is in contact with the transparent electrode, the metal foil is formed of at least one selected from the group consisting of Sn, Ag, Ni, In, and Cu.
A solar-tracking photovoltaic array is described. The photovoltaic array includes mounting hardware configured to rotate photovoltaic modules associated with the photovoltaic array about one or more axes. In some embodiments, the photovoltaic modules can be coupled to a torque tube oriented in a substantially North-South direction. An orientation motor can then periodically rotate the torque tube in a manner that causes the photovoltaic modules to be oriented towards the sun. The orientation motor can also be utilized to apply short pulses to the torque tube that dampen oscillations caused by wind buffeting the photovoltaic modules.
The present subject matter is directed to an electrical power circuit connected to a power grid and method of operating same. The electrical power circuit has a power converter electrically coupled to a generator, such as a doubly-fed induction generator, having a rotor and a stator. Thus, the method includes operating rotor connections of the rotor of the generator in a wye configuration during a first rotor speed operating range. Further, the method includes monitoring a rotor speed of the rotor of the generator. Thus, the method also includes transitioning the rotor connections of the rotor from the wye configuration to a delta configuration if the rotor speed changes to a second rotor speed operating range.
Technical solutions are described for determining a sensor failure in a motor control system with at least three phase current measurements. An example system includes a current controller to generate an input voltage command for a motor using feedforward control. The system further includes a failed sensor identification module that, in response to the current controller operating using the feedforward control, determines that a current offset error is indicative of a failure of a current sensor, the current offset error determined based on a magnitude and a phase of a diagnostic current. Further, the failed sensor identification module identifies the current sensor experiencing the failure based on a phase value of the diagnostic current in response to the failure.
A motor-driven integrated circuit comprises a plurality of position comparators, a timer and a central processing. Each of the plurality of position comparators receives a pole detection signal denoted a position of a rotor of a motor. The timer receives a timing interrupt signal output by the plurality of position comparators when a predetermined edge of the pole detection signal is generated and records a time of the predetermined edge. The central processing unit obtains a rotation speed of the motor according to a time difference between two predetermined edges.
A motor control system includes an electric motor and inverter. The electric motor includes a stator, rotor, and winding structure. The stator includes an iron core with a plurality of slots formed therein along a radial direction of the stator. The winding structure has a plurality of hairpin wires with pins disposed in the slots. The winding structure is configured to provide a plurality of phase windings and each phase winding includes a plurality of motor windings. The inverter includes a switching controller configured to control the turning-on and turning-off of the motor windings of each phase winding of the winding structure. When the electric motor operates in a high-speed mode, the switching controller controls the turning-on and turning-off of the motor windings of each phase winding such that a number of the phase windings turned-on is ⅓ less than a number of all the phase windings.
An example unmanned aerial vehicle includes a power source, a processor module having one or more processors, and a plurality of boom arms, each boom arm being couplable to a printed circuit board (PCB) and a plurality of propellers. In the example UAV, a PCB of each boom arm includes a power hub electrically couplable to the power source and to corresponding propellers of the boom arm, and a signal hub electrically couplable to at least one processor of the processor module and to the corresponding propellers. Further, in the example UAV, the power hub of each PCB is configured to transfer power from the power source to the corresponding propellers, and wherein the signal hub of each PCB is configured to transfer signals from the processor module to the corresponding propellers such that the processor module controls the plurality of propellers.
Multi-phase electronic power converter (50) for outputting multi-phase alternating current, wherein for every phase the current converter (50) comprises a power output (52) controlled via at least two semiconductor switches (51) connected in a half-bridge circuit, wherein the electronic power converter (50) has a control device (53) which is configured for processing a target value signal of the control device (53) supplied as an input signal, each in the form of a bit stream (1, 2, 3, 30, 31, 32) of one or more bits for every phase, characterized in that the control device (53) is configured by means of space-vector modulation to generate actuation signals (P1, P2, P3) of the semiconductor switches (51) in relation to the bit streams (1, 2, 3, 30, 31, 32) supplied as an input signal.
A modular high-power converter system includes an electronic power distribution unit configured to output an analog current (AC) voltage to a power bus, and at least one Transmit or Receive Integrated Microwave Module (T/RIMM) that includes a voltage converter unit and a transmitter and receiver (T/R) unit. The voltage converter unit includes at least one analog-to-digital converter (ADC) to convert the AC voltage into a direct current (DC) voltage having a first DC voltage level. The transmitter and receiver (T/R) unit includes a modular-based DC/DC converter to convert the DC voltage into a second DC voltage having a second voltage. The modular-based DC/DC converter includes a modular power converter unit configured to generate the second DC voltage. The modular converter unit is configured to be independently interchangeable with a different modular converter unit.
A bidirectional DC converter assembly includes two serially-arranged DC/DC converters. The first converter is a buck (or a buck/boost) converter to be connected to a high-voltage (HV) level of an electric vehicle. The second converter is a series resonant switching converter to be connected to a low-voltage (LV) of the vehicle. The series resonant switching converter of the second converter is formed by a DC/AC converter, a transformer, and an AC/DC converter, which are serially arranged in the stated order between the first converter and the LV level. A bidirectional peak current controller is associated with the first converter. The peak current controller is realized by a current measurement at an inductor of the first converter. The peak current controller uses the coil current value, which is modified with an offset value and thus has a constant sign, as a set point in controlling the first converter.
A redundant power supply apparatus includes at least two power inlets, at least two power supply units, and a common component. Each power inlet is connected to an AC power source. Each power supply unit has an input side and the at least two power supply units having a common output side, each input side is connected to the power inlet, and each power supply unit is configured to convert the AC power source into a DC power source. The common component is connected at the common output side and configured to receive DC power sources. Accordingly, the redundant power supply apparatus is provided to improve reliability of redundant operations between multiple external power sources without using mechanical switches.
A power conversion apparatus including a synchronous rectification (SR) transistor, a SR controller and a snubber circuit is provided. The SR controller is coupled to the SR transistor to control the SR transistor. A ground terminal of the SR controller is coupled to a source terminal of the SR transistor, and a power terminal of the SR controller is coupled to a system voltage. A first terminal of the snubber circuit is coupled to a drain terminal of the SR transistor. A second terminal of the snubber circuit is coupled to the power terminal of the SR controller. The snubber circuit obtains power from the drain terminal of the SR transistor and provides the system voltage accordingly.
A power factor correction (PFC) stage of a power supply unit has a PFC circuit including a rectifier circuit, a PFC controller circuit with a PFC switch, a current sensor connected to the PFC switch, a high frequency bypass capacitor connected between the PFC controller circuit and the rectifier circuit, and a bulk storage capacitor connected between the PFC controller circuit and an output of the PFC stage. The PFC stage also has a negative temperature coefficient thermistor connected in series with the PFC switch and the current sensor. During a start-up of the power supply unit, the PFC controller circuit causes the PFC switch to turn-on until the PFC controller circuit causes the PFC switch to turn-off after a current through the current sensor is sensed as being equal to or greater than a preset value.
A linear motor is disclosed. The linear motor includes a housing; a vibrating assembly arranged in the housing, the vibrating assembly including a weight and a plurality of coils connecting with the weight; a magnet assembly connecting with the housing, the magnet assembly including a main magnet and a side magnet; and an elastic connecting piece supporting the vibrating assembly in the housing elastically. The coils are arranged around the main magnet; and the side magnet is arranged adjacent to peripheries of the coils.
A parallel magnetic circuit motor includes a rotor without magnets and a stator with magnets. The rotor, stator and windings are configured to produce unidirectional current and torque with electrically independent phases.
A downhole electric submersible pump, with at least one pump unit having a pump inlet, and an electric motor system to power the pump, the electric motor system comprising an induction motor and permanent magnet motor. The induction motor and permanent magnet motor share a common power supply, connected in series.
A temperature estimating device configured to estimate a temperature of an electric motor includes a temperature detecting part for acquiring a detected temperature detected by a temperature sensor attached to the electric motor, a memory part for successively storing the detected temperature acquired by the temperature detecting part at a predetermined sampling period, and a temperature estimating part for using the detected temperature stored by the memory part, a ratio of amount of change of the detected temperature with respect to time, and a coefficient as the basis to estimate a temperature of a measurement target part of the electric motor.
In a brushless motor having a rotor in which a drive magnet 43 and a position detection magnet 44 are fixed to the inside of a rotor case 44, along the axial direction, an annular separation plate 45 having positioning parts 45a and 45b for positioning these in the circumferential direction is disposed between the drive magnet 43 and the position detection magnet 44. Thereby, the magnetic influence of the drive magnet can be limited, and thus a highly reliable position detection signal can be obtained.
A retightenable wedge system for tightening a coil in a slot of a generator stator bar is presented. The retightenable wedge system includes a first filler layer, a spring member, a second filler layer and a retightenable wedge assembly. The retightenable wedge assembly includes a slot wedge having an aperture, a tightening member having form fit feature and a locking member having mating form fit feature. The tightening member is tightenable in the aperture such that a radial load is applied on the second filler layer for tightening the coil in the slot. The tightening member is locked in place in the aperture by an engagement between the form fit feature of the tightening member and the mating form fit feature of the locking member such that the tightening member is restrained from backing out of the slot wedge.
An axial field rotary energy device can include a rotor comprising an axis of rotation and a magnet. In addition, a stator can be coaxial with the rotor. The stator can include a plurality of stator segments that are coupled together about the axis. Each stator segment can include a printed circuit board (PCB) having a PCB layer comprising a coil. Each stator segment also can include only one electrical phase. The stator itself can include one or more electrical phases.
A rotating electric machine includes a stator core, a stator winding, and a rotor rotatably disposed via an air gap so as to be allowed to rotate relative to the stator core. A magnetic resistance-altering portion is provided on every other magnetic pole of magnetically-assisted salient pole members. A magnetic pole provided with the magnetic resistance-altering portion and a magnetic pole without the magnetic resistance-altering portion are alternately arranged.
The described technology relates to a stator of a planar type motor and a planar type motor using the same, which are easy to manufacture and are capable of reducing core losses, thereby maximizing motor performance. First cores that are difficult to form by stacking electrical steel plates are formed of soft magnetic powders, and second cores that are formed by stacking electrical steel plates having the same size are arranged in a region where a vortex is concentrated, thereby allowing easy manufacture and being capable of maximizing the performance of the planar type motor.
A method and power transmitter for efficiently controlling power transmission to one or more power receivers in a wireless multi-power transmission system are provided. The method includes performing, when a predetermined measurement cycle arrives, a load measurement; comparing a current load measurement value with a previous load measurement value; determining whether the current load measurement value is increased over the previous load measurement value by at least as much as a first predetermined threshold; gradually increasing, when the load measurement value is increased over the previous load measurement value by at least as much as the first threshold, a transmission power value until a request for a subscription to a wireless multi-power transmission network from a power reception target within a predetermined time limit; and stopping, when the request for the subscription is not received before the time limit is exceeded, power transmission to the power reception target.
A power receiving unit includes: a power receiving section configured to receive electric power from a power transmission unit; and an electromagnet configured to be magnetized based on the electric power received from the power transmission unit.
A power transmitter (2) for transferring power to a power receiver comprises a first inductor (307) for providing power and a second inductor (407) for receiving data signals from a power receiver. The first (307) and second (407) inductors are separate inductors in a power transfer circuit (701) and a data signal receiving circuit (702). The data signal receiving circuit (702) comprises a data extracting circuit (1007) for extracting the data signals received by the second inductor (407). The power transmitter comprises a control circuit (401) for controlling the power in dependence on the data signals. The power transmitter transfers power during power transfer periods and receives data during communication periods, communication periods corresponding to periods wherein power is low. The control circuit (401) electrically couples the data extraction circuit (1007) and the second inductor (407) from each other during communication periods and electrical decouples them during at least a part of power transfer periods.
A method and apparatus for optimally allocating resources of a provider according to a contribution margin ratio of a resource consumer in a distributed energy resource environment are described. An embodiment is a method for distributing energy resources in a distributed energy resource system. The method may include receiving information about the amount of available energy resources from each of one or more providers, receiving information about the amount of required energy resources from each of one or more consumers, assessing a contribution margin ratio for each of the one or more consumers, calculating an energy resource allocation amount for each of the one or more consumers based on the assessed contribution margin ratio, and distributing energy resources to each of the one or more consumers based on the calculated energy resource allocation amount.
According to one aspect, embodiments herein provide a UPS system comprising: a plurality of UPS's configured to be coupled in parallel, each UPS comprising: a bypass line selectively coupled between an input and an output via a bypass switch, wherein the bypass switch is configured to close in a first mode and to open in a second mode, and a controller coupled to the plurality of UPS's and configured to, in response to a determination that input power is at a desired level, control the bypass switch of a first UPS in the plurality of UPS's to operate in the first mode and provide a continuous output current waveform with an RMS value to the load, and selectively control the bypass switch of each other UPS to operate in the first mode such that an output current waveform provided by each UPS includes at least one delay period.
A temperature detector detects a temperature of a battery. A charging unit charges the battery. A power reception coil receives a first electric power transmitted in a contactless manner from a power transmission coil of a contactless charging device. A supplying unit supplies the charging unit with a second electric power on the basis of the first electric power. A setting unit sets a supply current to be supplied from the supplying unit to the charging unit. A determination unit determines whether the battery is continuously charged. The setting unit sets the supply current to a value larger than a settable minimum value regardless of the temperature of the battery when the charging unit starts charging the battery on the basis of the second electric power, and reduces the supply current as the temperature is higher when the determination unit determines that the battery is continuously charged.
The present disclosure discloses a charging system, a charging method, and a power adapter. The charging system includes a battery, a first rectifier, a switch unit, a transformer, a second rectifier, a sampling unit, and a control unit. The control unit outputs a control signal to the switch unit, and adjusts a duty ratio of the control signal according to a current sampling value and/or voltage sampling value sampled by the sampling unit, such that a third voltage with a third ripple waveform outputted by the second rectifier meets a charging requirement of the battery.
Provided is an electric storage device including: a control unit, a charge/discharge management unit and a current generation unit, which are connected through an input/output unit; and an electric storage unit that is connected to the charge/discharge management unit and is connected to the current generation unit through a switch.
One embodiment of the invention is an apparatus for determining the initiation of a charging process for a secure charging apparatus. The apparatus has circuitry for authorising a user, circuitry for confirming connection of a device, and circuitry for confirming charging of the device.
An energy system for renewable energy applications includes a renewable energy source, a bidirectional inverter connected an AC bus and a DC bus, an energy storage unit connected to the bidirectional DC/DC converter, and a control system comprising one or more controllers coupled to the bidirectional inverter and the bidirectional DC/DC converter. The bidirectional inverter is connected to the renewable energy source and a bidirectional DC/DC converter through the DC bus. The system is configured to capture low power of a photovoltaic (PV) array, energy typically lost to inverter clipping, and through the utilization of ramp rate control.
Embodiments disclose an energy generation system including a photovoltaic (PV) array having a plurality of PV modules for generating direct current (DC) power, a plurality of Opti-battery packs coupled to the PV array, where each Opti-battery pack is coupled to a respective PV module and configured to receive DC power from the respective PV module, and an inverter configured to receive DC power from the plurality of Opti-battery packs and to convert the DC power to alternating current (AC) power.
A hybrid power storage apparatus according to one embodiment of the present disclosure includes a battery configured to store first electric power supplied to an electric power system and second electric power supplied therefrom; an electric power conversion unit configured to convert the first electric power into an alternating current (AC) power and the second electric power into a direct current (DC) power; and a control unit configured to receive electric power information of the electric power system from a server, and control the battery and the electric power conversion unit to supply electric power to the electric power system or to receive electric power supplied therefrom based on a magnitude or a frequency of electric power included in the received electric power information.
An Output Supply System (OSS) may comprise an Electric Power Generating System (EPGS) comprising a first Permanent Magnet Synchronous Machine (PMSM), a first three-phase multifunction converter, a first three-position switch, a battery management system, wherein the PMSM, the first three-phase multifunction converter, the first three-position switch, and the battery management system are in electronic communication, and a first tangible, non-transitory memory configured to communicate with a first controller, the first tangible, non-transitory memory having instructions stored thereon that, in response to execution by the first controller, cause the first controller to perform operations.
A system for conducting electricity including a first body, a second body configured to move relative to the first body in a primary movement direction, and one or more electrical contact modules disposed between and in contact with the first body and the second body.
A stackable module has a housing provided to receive an electric/electronic component, and a clamping device for attachment to a support rail, wherein the clamping device has two latching/gripping hooks, which are displaceable in mutually opposite directions between an open position and a fastening position, and a force deflection mechanism for adjusting the latching/gripping hooks between the open position and the fastening position, said mechanism being actuable by means of an actuating element and able to be subjected to an actuating force from an outer side. In this case, the latching/gripping hooks bound a free opening distance which, for release fastening to the support rail, is greater in the open position and smaller in the fastening position than a provided support rail extent. In this case, provision is made for the force deflection mechanism to have an actuating-element-side deflection profile and a hook-side displacement part, which has a deformation portion which is deformable by a displacement force in order to generate a hook-side displacement, wherein between the deflection profile and the deformation portion, a sliding contact is able to be formed, at which the deformation portion is able to be subjected to the displacement force via the deflection profile.
A laser device includes a tunable laser having a laser cavity and a laser control module placed outside the laser cavity, the tunable laser being configured to generate laser light having a center frequency, the laser control module being configured to receive at least a portion of the laser light generated by the laser, to generate a control signal and to feed the control signal back to the laser for stabilizing the frequency, wherein the laser control module includes an interferometer having interferometer mirrors and a tunable interferometer length, and wherein the interferometer length is tunable by an actuator arranged between the interferometer mirrors and by thermal variation.
A charging connector comprising: a pair of power supply terminals for pinching power supply terminals of a Type-C plug connector complying with the USB connector standard from both sides, and a pair of grounding terminals and for pinching qrounding terminals of the plug connector from both sides; wherein the power supply terminals and the grounding terminals are configured by fork terminals.
An electrical connector assembly includes a first connector including a first electrical terminal and a second connector including a second electrical terminal. The first connector and the second connector are movable from a mated position toward an unmated position. The second connector includes a first block, a second block, and a third block. The electrical connector assembly also includes a connector position assurance that is movable between an assurance position and a pre-lock position. The connector position assurance includes a stop tab. The first block is positioned to engage the stop tab when the connector position assurance is located in the pre-lock position. The second block is positioned to engage the stop tab when the first connector is located a first distance from the second connector. The third block is positioned to engage the stop tab when the first connector is located a second distance from the second connector.
A waterproof connector to be mounted on a substrate includes one or more contacts, a peripheral shell in a cylindrical shape surrounding the one or more contacts and including a counter-connector accommodation portion that opens frontward in a fitting direction, and a housing made of insulating resin and holding the one or more contacts and the peripheral shell, the peripheral shell including a shell front end exposure portion in a cylindrical shape that is situated at a front end of the peripheral shell in the fitting direction and is exposed from the housing, and one or more through-holes that penetrate the shell front end exposure portion in a direction intersecting the fitting direction, and the housing tightly covering a whole circumference of the peripheral shell with the shell front end exposure portion being exposed.
An electrical terminal housing includes a housing body. The housing body defines a terminal cavity. An insertion opening in the housing body opens into the terminal cavity. A mate opening in the housing body also opens into the terminal cavity. A terminal lock extends from the housing body and is located in the terminal cavity. The terminal lock is adapted to engage an electrical terminal to retain the electrical terminal in the terminal cavity. The terminal lock is offset from the center of a side of the terminal cavity and is located closer to one side wall of the terminal cavity.
A connection terminal includes a housing; an insertion opening, which is arranged on the housing and into which a conductor can be inserted in an insertion direction; a contact element, which is arranged on the housing and with which the conductor can be brought into contact by insertion into the insertion opening; a spring element, which is arranged on the housing, is held on the housing by a spring body, and has a resiliently movable spring leg extending from the spring body, wherein the spring leg clamps the conductor inserted into the insertion opening to the contact element in a clamping position; and an actuating element, which is arranged on the housing and can be actuated in an actuation direction to move the spring leg out of the clamping position, wherein the actuating element can be locked to the housing in an open position.
Aspects of the subject disclosure may include, for example, an antenna array having a plurality of dielectric antennas and a plurality of dielectric cores. At least one surface, excluding an aperture, of each dielectric antenna can be configured to reduce a transfer of signals between the plurality of dielectric antennas. Each dielectric antenna of the plurality of dielectric antennas can further have a structural configuration that enables flat surfaces of the plurality of dielectric antennas to be adjacent to each other. Each dielectric core of the plurality of dielectric cores can be coupled to a select one of the plurality of dielectric antennas to facilitate guiding a select one of a plurality of electromagnetic waves to the select one of the plurality of dielectric antennas. Other embodiments are disclosed.
Aspects of the subject disclosure may include, for example, a system having a first plurality of transmitters for launching according to a signal, first electromagnetic waves, and a second plurality of transmitters for launching, according to the signal, second electromagnetic waves. The first electromagnetic waves and the second electromagnetic waves combine at an interface of a transmission medium to induce a propagation of a third electromagnetic wave, the third electromagnetic wave having a non-fundamental wave mode and a non-optical operating frequency, and wherein the second plurality of transmitters are spaced apart from the first plurality of transmitters in a direction of propagation of the third electromagnetic wave. Other embodiments are disclosed.
A kit for facilitating transmission of wireless local-area network radio signals over a pre-existing coaxial cable distribution network is disclosed. The kit may include a splitter including at least one input port configured to be communicatively coupled with at least one external antenna connector of a wireless local-area network router. Further, the splitter may include a plurality of output ports configured to be communicatively coupled to a plurality of cables of the cable distribution network. Further, the kit may include a cable impedance matching unit coupled to the at least one external antenna connector of the wireless local-area network router. Further, the kit may include a plurality of antennas corresponding to a plurality of terminal ends of the cable distribution network. Further, an antenna of the plurality of antennas may include an antenna element, an antenna connector and an antenna impedance matching unit.
An antenna system with a bridged ground plane includes a printed circuit board, a first ground plane, a bridge, an antenna radiating element, an antenna connection, and at least one electronic component. The first ground plane is coupled to a first face of the printed circuit board. The bridge couples the first ground plane to the second ground plane. The antenna radiating element is coupled to the second ground plane via the antenna connection. The electronic component or components are coupled to a second face of the printed circuit board.
An antenna system for a meter and/or other communication device, including a capacitive electric field source and an external antenna element. The capacitive electric field source is positioned within a dielectric cover and is electrically connected to an output port of a transceiver for forming an electric field indicative of the output signal. The external antenna element is separated from the capacitive electric field source by the dielectric cover and is configured for capacitively coupling to the capacitive electric field source and radiating electromagnetic radiation indicative of the output signal. The external antenna element then efficiently radiates and receives electromagnetic waves for wireless communications.
An antenna assembly includes a camera, a plug, and a radome. The radome is configured to house one or more antennas. The radome defines an opening extending between its interior surface and its exterior surface. The camera is positionable at least partially within the opening of the radome. The camera and the radome define a passage between the radome and the camera when the camera is positioned at least partially within the opening of the radome. The plug defines an opening extending between its interior plug surface and its exterior plug surface to receive at least a portion of the camera. The plug is positionable at least partially within the passage to substantially prevent contaminants from passing into the radome via the opening of the radome. Other antenna assemblies and methods relating to antenna assemblies are also disclosed.
An automatically tunable mobile antenna is provided with toroidal inductors connected in series between the antenna feed point and a whip and a shunt inductor to ground at the RF input, with the inductors forming an L network impedance matching circuit having values which are in a binary sequence and which are selectively added to impedance match the whip to the output impedance of a transmitter.
Foldable wireless electronic devices that communicate wirelessly are provided that can attenuate the cavity modes created when the devices are folded. The electronic devices may utilize prescribed housing dimensions, ohmic contacts, and capacitive coupling to attenuate the cavity modes. There may be minimal impact on the industrial design of the devices. The radiation efficiency and VSWR of the antennas of the electronic devices may not be degraded. Also, the frequency of the cavity modes may be controlled such that the cavity modes are resonated out of frequencies of interest, and the severity and occurrence of RF energy absorption may be attenuated or eliminated. Users of the foldable wireless electronic devices may have increased satisfaction as the devices may perform better while still having desirable aesthetics and appearance.
An antenna module includes a resin multilayer substrate including a plurality of base materials that are flexible. The resin multilayer substrate includes a rigid portion at which a first number of stacked layers of the base materials is relatively large and a flexible portion at which a second number of stacked layers of the base materials is relatively small. A radiating element including a conductor pattern is provided at the rigid portion. A transmission line including a conductor pattern and electrically connected to the radiating element is provided at the flexible portion. A frame-shaped conductor that surrounds the radiating element when viewed in a direction in which the base materials are stacked is provided at either the rigid portion or the flexible portion, or both the rigid portion and the flexible portion.
A method and apparatus is provided for harvesting electricity from a biofilm retained in a zero chamber, no interphase container, the biofilm having a portion supporting aerobic microbial activity and a second portion supporting anaerobic microbial activity, wherein the first and the second portion are in direct physical contact. A power harvester is electrically connected, directly or indirectly, to the second portion of the biofilm.
A fuel cell assembly includes a fuel cell stack including a plurality of fuel cells, an incoming oxidizing gas flow path configured to deliver an oxidizing gas to the plurality of fuel cells, and a chromium-getter material located in the incoming oxidizing flow path. A fuel cell includes an electrolyte, a cathode electrode on a first side of the electrolyte, an anode electrode on a second side of the electrolyte, and a chromium-getter material on the cathode electrode.
A fuel cell system comprising: a supply valve for supplying the anode gas into an anode system of the fuel cell system; a purge valve for discharging an off-gas from the anode system; a pressure detecting portion that estimates or measures a pressure inside the anode system; and a hydrogen concentration estimating portion that estimates a hydrogen concentration inside the anode system based on a pressure decrease during a purge valve open duration in a supply valve close state.
A power conditioning system includes a fuel cell connected to a load, a fuel cell converter connected between the fuel cell and the load and converting an output voltage of the fuel cell at a predetermined required voltage ratio, a battery connected to the load in parallel to the fuel cell and serving as a power supply source different from the fuel cell, and a battery converter connected between the battery and the load and converting an output voltage of the battery at a predetermined required voltage ratio. The power conditioning system includes a current bypass path configured to couple the fuel cell and the load while bypassing the fuel cell converter, an alternating-current voltage application unit configured to apply an alternating-current voltage signal to an output side of the fuel cell converter, and an internal state estimation unit configured to estimate an internal state of the fuel cell on the basis of a predetermined physical quantity when the alternating-current voltage signal was applied by the alternating-current voltage application unit.
A fuel cell system includes a reformer, a raw-material supplier, a desulfurizer, a flow controller, a vapor supplier, a fuel cell, a combustor, and a controller. After the raw-material supplier supplies a raw material at the startup of the fuel cell system, the controller causes the combustor to combust the raw material exhausted as off-gas from the fuel cell, subsequently causes the flow controller to allow gas exhausted from the reformer to flow through a recycle gas passage, and thereafter causes the vapor supplier to supply vapor, or the controller causes the flow controller to allow the gas exhausted from the reformer to flow through the recycle gas passage, subsequently causes the combustor to combust the raw material exhausted as the off-gas from the fuel cell, and thereafter causes the vapor supplier to supply the vapor.
A fuel cell comprises an anode, a cathode, a solid electrolyte layer, and a current collecting member. The cathode contains a perovskite composite oxide as a main component and contains a compound that includes at least one of S and Cr as a secondary component. The cathode has a surface facing the current collecting member. The surface of the cathode includes a first region that is electrically connected to the current collecting member and a second region that is separated from the current collecting member. The first region and the second region respectively contain a main phase that is configured from a perovskite composite oxide and a secondary phase that is configured from the compound. The occupied surface area ratio of the secondary phase in the first region is greater than the occupied surface area ratio of the secondary phase in the second region.
A non-aqueous electrolyte secondary battery positive electrode capable of suppressing a decomposition reaction of an electrolyte solution in an overcharged state is provided. A non-aqueous electrolyte secondary battery positive electrode according to this embodiment includes a positive electrode active material layer which includes a positive electrode active material (54) containing a lithium transition metal oxide, a tungsten compound (56), a phosphoric acid compound (58) not in contact with the positive electrode active material (54), and an electrically conductive agent (52) in contact with the tungsten compound (56) and the phosphoric acid compound (58).
A binder composition for a lithium secondary battery, an electrode, and a lithium secondary battery, the binder composition including an interpenetrating network structure that includes a cyclic polymer, the cyclic polymer including a repeating unit represented by Formula 1 or a repeating unit represented by Formula 2; and a copolymer, the copolymer including a repeating unit represented by Formula 3 and a repeating unit represented by Formula 4, wherein an amount of the repeating unit represented by Formula 3 is about 40 mol % to about 70 mol %, based on a total amount of the copolymer:
The invention relates to a composite made of a porous carbon and an active material containing sulphur and to method for producing same. A method for producing a composite made of a porous carbon structure and sulphur is disclosed, said composite being characterized by a high capacitance and a low capacitance loss, when used as an electrode material for a lithium-sulphur secondary battery. According to the invention, a dispersion of carbon powder, an active material containing sulphur and an aqueous medium are treated hydrothermally at a temperature sufficient for melting sulphur. The liquid phase which forms, which contains the melted sulphur and water, infiltrates the pores of the porous carbon.
A positive electrode active material for a lithium secondary battery, a method of preparing the same, and a lithium secondary battery, the positive electrode active material including nickel, cobalt, and manganese, wherein the positive electrode active material has a core part and a surface part, an amount of manganese in the core part and the surface part is higher than 25 mol %, and amounts of nickel and cobalt in the positive electrode active material vary such that a concentration gradient of the nickel and the cobalt in a direction from the core part to the surface part is present in the positive electrode active material.
An electrode assembly 10 includes an assembly 4 including an active material compact (active material section) 2 including an active material constituted of a transition metal oxide, a solid electrolyte layer (solid electrolyte section) 3 including a solid electrolyte having an ion-conducting property, and a multiple oxide layer (multiple oxide section) 5 including at least one of a metal multiple oxide represented by General Formula (II) below and a derivative thereof anda collector 1 provided so as to join the active material compact 2 on one surface (first surface) 41 of the assembly. Ln2Li0.5M0.5O4 (II) In the formula, Ln represents a lanthanoid element, and M represents a transition metal.
Disclosed is method of preparing a selenium carbon composite material and a use of the selenium carbon composite material in a cathode of a lithium selenium secondary battery. A battery formed with a cathode of the disclosed selenium carbon composite material has high energy density and stable electrochemical performance. The disclosed selenium carbon composite material can effectively shorten the migration distance of lithium ions during charging and discharging of the battery and improve conductivity and utilization of selenium after compounding carbon and selenium. Multiple batteries formed with cathodes of the disclosed selenium carbon composite material can be assembled into a lithium selenium pouch-cell battery having stable electrochemical performance and high energy density.
The invention relates to a connecting pole (1) for a rechargeable battery (12) having the following features: a) the connecting pole (1) has a connecting section (2), in which a pole terminal can be fastened on the connecting pole (1), b) the connecting pole (1) has a fastening section (3), in which the connecting pole (1) can be fastened in a housing part (5) of the rechargeable battery (12), c) the fastening section (3) has a labyrinth section (4), d) the outer wall (6) of the connecting pole (1) has, in the labyrinth section (4), one or more peripheral projections (7, 8, 10), e) at least two adjacently arranged peripheral projections (70, 71, 72, 73, 80, 81, 82, 83) are flanged in pairs in the mutually facing direction, wherein a recess (11) is formed on each of the peripheral projections (70, 71, 72, 73, 80, 81, 82, 83) with respect to the outer wall (6) of the connecting pole (1) by the flanged region. The invention also relates to a rechargeable battery housing or a part thereof with at least one such connecting pole and to a machine for producing such a connecting pole.
A separator for a rechargeable battery includes a porous substrate and a heat-resistant layer disposed on at least one surface of the porous substrate, wherein the heat-resistant layer includes a compound represented by Chemical Formula 1 or a cross-linked product thereof and a rechargeable lithium battery includes the same. (R)n1—Ar—OH [Chemical Formula 1] In Chemical Formula 1, Ar, R, and n1 are the same as described in the detailed description.
To provide an ultrahigh molecular weight polyethylene stretched microporous film having high strength and heat resistance.An ultrahigh molecular weight polyethylene stretched microporous film, which comprises at least an ultrahigh molecular weight polyethylene having an intrinsic viscosity ([η]) of at least 7 dl/g and at most 60 dl/g, and which has a porosity of at least 10% and at most 70% and a breaking stress of at least 1 MPa when melt-stretched at 150° C., which uses, as the ultrahigh molecular weight polyethylene, preferably ultrahigh molecular weight polyethylene particles which satisfy (1) an intrinsic viscosity ([η]) of at least 7 dl/g and at most 60 dl/g, (2) a bulk density of at least 130 kg/m3 and at most 700 kg/m3, and (3) ΔTm (ΔTm=Tm1−Tm2) of at least 9° C. and at most 30° C., which is a difference between the melting point (Tm1) at the 1st scanning and the melting point (Tm2) at the 2nd scanning measured by DSC.
The present invention relates to a method for manufacturing a separator in which the tensile strength is enhanced and melt shrinkage is reduced by controlling elongation step from among the manufacturing steps thereof. Additionally, the present invention relates to a separator having superb winding processability as well as superb thermal stability due to the raised the tensile strength while maintaining a low rate of melt shrinkage. Furthermore, the present invention relates to an electrochemical battery having enhanced stability by utilizing a separator having high tensile strength and a low rate of melt shrinkage.
An organic light emitting display device has a plurality of first electrodes, intermediate layers, and second electrodes that correspond to a plurality of pixel areas. The first electrodes are spaced from one another, the second electrodes are spaced from one another, and the intermediate layers are spaced from one another. A conductive protection layer is formed over the second electrodes, and a connection electrode layer is formed over the conductive protection layer and electrically connecting the second electrodes.
A light-emitting diode chip includes an electrical connection layer is arranged over the light-emitting surface of the light-emitting epitaxial laminated layer, which is not connected with isolation of the dielectric layer. After CMP treatment, the flat surface is plated with a transparent current spreading layer, which reduces horizontal conduction resistance of the transparent current spreading layer and replaces the metal spreading finger for horizontal conduction.
A photosensor element that is capable of achieving a good balance between high photoelectric conversion efficiency and low dark current is able to be obtained by using a composition for forming a hole collecting layer of a photosensor element, which contains an organic solvent and a charge-transporting material that is composed, for example, of an aniline derivative or thiophene derivative represented by one of formulae (AA)-(DD) and having a molecular weight of 200-2,000.
A vapor deposition apparatus is configured to attract a vapor deposition mask by an electromagnet. The electromagnet includes a first electromagnet for generating a magnetic field in a first orientation, and a second electromagnet for generating a magnetic field in a second orientation, which is a reverse orientation to the first orientation. As a result, a generated magnetic field is weakened by operating the first and second electromagnets at the same time when a current is turned on, and an intended magnetic field can be obtained by thereafter turning off the second electromagnet. As a result, an influence of electromagnetic induction is reduced, reducing failure of elements and the like formed on a substrate for vapor deposition and degradation in properties of the elements. Meanwhile, by turning off the operation of the second electromagnet after the current is turned on, a normal attraction force can be obtained.
A semiconductor device includes a Hall element, a sealing resin and at least one mount surface. The Hall element includes a functional surface and at least one electrode provided on the functional surface. The sealing resin includes a resin obverse surface and a resin reverse surface spaced apart from each other in a thickness direction, and covers at least a portion of the Hall element. The mount surface is electrically connected to the electrode of the Hall element and exposed from the resin reverse surface. The Hall element includes an exposed surface opposite to the functional surface. The exposed surface is flush with either one of the resin obverse surface and the resin reverse surface.
An optoelectronic lamp device includes an optoelectronic semiconductor component including a top side including a light-emitting face, and a housing embedding the semiconductor component and leaving free the light-emitting face, wherein a housing face is coated with a light-scattering dielectric resist layer that may scatter light incident on a face of the resist layer facing away from the housing face.
The invention provides a luminescent material (10) based on quantum dots (100), wherein the quantum dots (100) have inorganic capping agents (110), wherein the luminescent material (10) comprises particles (12) having an inorganic salt matrix (14) hosting the quantum dots (100) with inorganic capping agents (110), wherein the luminescent quantum dots (100) have an outer layer (105). The invention also provides a method for the production of such luminescent material (10). The new luminescent material can be used and processed as conventional particulate luminescent material.
A light emitting device is provided. The light emitting device includes a first type semiconductor layer, a second type semiconductor layer, an active layer, a plurality of first electrodes, and a second electrode. The first type semiconductor layer includes a plurality of low resistance portions and a high resistance portion. The low resistance portions are isolated from one another by the high resistance portion. The active layer is present between the first type semiconductor layer and the second type semiconductor layer. The active layer includes a first region and at least one second region. A threading dislocation density of the first region is greater than a threading dislocation density of the second region, and a vertical projection of at least one of the low resistance portions on the active layer at least partially overlaps with the second region.
A semiconductor device according to an embodiment comprises: a substrate; a buffer layer provided on the substrate; a first conductivity type semiconductor layer provided on the buffer layer; a second conductivity type semiconductor layer; a light emitting structure, provided between the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, comprising an active layer which emits ultraviolet light; and a plurality of air voids provided within the buffer layer, wherein the air voids can be formed to have two or more inclined surfaces.
To fabricate a practically useful non-polar AlN buffer layer on a sapphire crystal plate and manufacture a UV light-emitting device on a non-polar crystal substrate by adopting the crystal substrate as an example, an embodiment of the present invention provides a crystal substrate 1D comprising an r-plane sapphire crystal plate 10 and an AlN buffer layer 20D of non-polar orientation. The AlN buffer layer comprises a surface protection layer 22 and a smoothing layer 26. The surface protection layer suppresses roughness increase on a surface of the AlN buffer layer, and the smoothing layer makes the surface of the AlN buffer layer a smoothed surface. Also provided is a crystal substrate 11 comprising an AlN buffer layer 20T to which a dislocation blocking layer 24 for reducing crystallographic defects is added between the surface protection layer 22 and the smoothing layer 26. In another embodiment a deep UV light-emitting device is provided.
A semiconductor light emitting element includes a substrate and a semiconductor structure. The substrate has a first main surface, a second main surface and side surfaces. The side surfaces form a first altered area in which voids are positioned in a first imaginary line and a second imaginary line different from the first imaginary line in the thickness direction of the substrate. The semiconductor structure is provided on or above the first main surface of the substrate.
An installation for treating material having a treatment chamber equipped with an envelope which separates a controlled atmosphere which is present in its interior from an atmosphere which is present outside the envelope and a housing which delimits the treatment chamber. At least one supporting roller for conveying the material is arranged at least partly inside the treatment chamber. One or more mounting apparatuses for mounting at least one supporting roller are arranged outside the housing. A flexible compensating element is provided between at least one mounting apparatus and a wall, which is associated with the latter, of the housing, there being provided a sealing arrangement which is connected to said compensating element and which separates the at least one mounting apparatus from the atmosphere which is present inside the envelope.
Provided is a multilayer film including inorganic particles having a band gap energy of 3.3 eV or more and inorganic particles having a band gap energy of less than 3.3 eV in different layers. Here, the layer including inorganic particles having band gap energy of 3.3 eV or more is disposed at an upper portion than the layer including inorganic particles having a band gap energy of less than 3.3 eV. Accordingly, the layer including inorganic particles having a band gap energy of 3.3 eV or more is included close to incident light to increase a reflectance in UV region and induce internal reflection, thereby enhancing energy conversion efficiency of a cell. At the same time, the multilayer film may include a lower encapsulant layer or backsheet including inorganic particles having a band gap energy of 3.3 eV or more, thereby increasing reflectances in visible and IR regions and thus reducing a loss of the incident light.
Disclosed are a single-source precursor for synthesizing metal chalcogenide nanoparticles for producing a light absorption layer of solar cells comprising a Group VI element linked as a ligand to any one metal selected from the group consisting of copper (Cu), zinc (Zn) and tin (Sn), metal chalcogenide nanoparticles produced by heat-treating at least one type of the single-source precursor, a method of preparing the same, a thin film produced using the same and a method of producing the thin film.
A package for an optical sensor device has a double-molded structure in which a first resin molded portion and a second resin molded portion are integrated. The first resin molded portion has a structure in which peripheries of a die pad portion on which an optical sensor element is mounted and a part of leads are molded with a resin so as to be integrated. The second resin molded portion has a structure in which the periphery of the first resin molded portion is molded with a resin so as to form an outer shape of the package. A glass substrate having a filter function is bonded to an upper surface of the resin molded portions to form a cavity in which is mounted the optical sensor element.
Certain aspects of the present disclosure generally relate to a semiconductor variable capacitor, and techniques for fabricating the same, implemented using a threshold voltage implant region. For example, the semiconductor variable capacitor generally includes a first non-insulative region disposed above a first semiconductor region, a second non-insulative region disposed above the first semiconductor region, and a threshold voltage (Vt) implant region interposed between the first non-insulative region and the first semiconductor region and disposed adjacent to the second non-insulative region. In certain aspects, the semiconductor variable capacitor also includes a control region disposed above the first semiconductor region such that a capacitance between the first non-insulative region and the second non-insulative region is configured to be adjusted by varying a control voltage applied to the control region.
A semiconductor device includes a thin film transistor including an oxide semiconductor layer and a wire connecting portion (201). The wire connecting portion (201) includes a lower electrically-conductive portion (3t) formed out of a same electrically-conductive film as the gate electrode, an insulating layer (15) having a contact hole (CH2) through which at least a part of the lower electrically-conductive portion (3t) is exposed, and an upper electrically-conductive portion (19t), at least a part of which is provided inside the contact hole (CH2). The insulating layer (15) includes the gate insulating layer (4), the protection layer (9) and the interlayer insulating layer (13). At a lateral wall of the contact hole, the gate insulating layer (4) includes an upper portion (41) and a lower portion (42) which is present on the substrate side of the upper portion (41), and when viewed in a normal direction of the substrate, a lateral surface of the lower portion (42) juts out from a lateral surface of the upper portion (41). The upper electrically-conductive portion (19t) is in contact with the lower electrically-conductive portion (3t) and the lateral surface and an upper surface of the lower portion (42) of the gate insulating layer (4) inside the contact hole.
A semiconductor device includes an oxide semiconductor layer, disposed over a substrate. A source electrode of a metal nitride is disposed on the oxide semiconductor layer. A drain electrode of the metal nitride is disposed on the oxide semiconductor layer. A metal-nitride oxidation layer is formed on a surface of the source electrode and the drain electrode. A ratio of a thickness of the metal-nitride oxidation layer to a thickness of the drain electrode or the source electrode is equal to or less than 0.2.
It is an object of the invention to provide a thin film transistor and a method for producing the same, which will easily achieve self-aligned formation of a source/drain region without through processes under a vacuum or a low pressure or with no use of expensive equipment.
The invention relates to a modulation device created on a substrate (1), comprising at least one nanodiode in the form of a T fitted into a U, the channel (31) of said nanodiode being the leg of the T that is inserted into the U. The device is characterized in that it comprises at least one electrically conductive line (37) that passes over at least part of said channel (31).
A laminated body comprising a substrate, an ohmic electrode layer, a metal oxide semiconductor layer, a Schottky electrode layer and a buffer electrode layer in this order, wherein a reduction suppressing layer is provided between the Schottky electrode layer and the buffer electrode layer.
A method of manufacturing a thin-film transistor (TFT) array substrate, including: forming a gate layer, a gate insulating layer, an oxide semiconductor layer, a source/drain electrode layer and a pixel electrode layer on a base substrate. The step of forming the source/drain electrode layer and the pixel electrode layer includes: forming a transparent conductive film and a first metallic film on the oxide semiconductor layer in sequence, to form a stack layer of the transparent conductive film and the first metallic film, in which the transparent conductive film contacts the oxide semiconductor layer; and forming source electrodes, drain electrodes and pixel electrodes by a single patterning process on the stack layer of the transparent conductive film and the first metallic film. One patterning process is saved, the production time is shortened, and the production cost is reduced.
A semiconductor device includes a semiconductor region made of a material to which conductive impurities are added, an insulating film formed on a surface of the semiconductor region, and an electroconductive gate electrode formed on the insulating film. The gate electrode is made of a material whose Fermi level is closer to a Fermi level of the semiconductor region than a Fermi level of Si in at least a portion contiguous to the insulating film.
A power semiconductor device includes a semiconductor body coupled to first and second load terminals. The body includes: at least a diode structure configured to conduct a load current between the terminals and including an anode port electrically connected to the first load terminal and a cathode port electrically connected to the second load terminal; and drift and field stop regions of the same conductivity type. The cathode port includes first port sections and second port sections with dopants of the opposite conductivity type. A transition between each of the second port sections and the field stop region forms a respective pn-junction that extends along a first lateral direction. A diffusion voltage of a respective one of the pn-junctions in an extension direction perpendicular to the first lateral direction is greater than a lateral voltage drop laterally overlapping with the lateral extension of the respective pn-junction.
A power semiconductor device includes a III-nitride heterojunction body including a first III-nitride body and a second III-nitride body having a different band gap than that of the first III-nitride body, a first power electrode coupled to the second III-nitride body, a second power electrode coupled to the second III-nitride body, a gate arrangement disposed between the first and second power electrodes, and a conductive channel that includes a two-dimensional electron gas that in a conductive state includes a reduced charge region under the gate arrangement that is less conductive than its adjacent regions. The reduced charge region extends beyond an edge of the gate arrangement toward one of the power electrodes only.
A flexible display apparatus is provided, including a flexible substrate including a bending area, an insulating layer formed on the flexible substrate and including at least one cutout at the bending area, and a plurality of wires configured following a surface shape of the insulating layer at the bending area. The at least one cutout includes sloped sidewalls protruding away from the flexible substrate.
A flexible display is disclosed. In one aspect, the flexible display includes a substrate and a plurality of first display layers formed on an upper surface of the substrate. The substrate includes a plurality of upper grooves, each of which defines a first opening in the upper surface and a plurality of lower grooves, each of which defines a second opening in a lower surface of the substrate. The upper grooves and the lower grooves are alternately arranged.
A display device includes first to fourth electrodes spaced from each other on a base surface and a fifth electrode spaced from the first to fourth electrodes. A first light emitter is between the first to fourth electrodes and the fifth electrode and overlaps the first to fourth electrodes. A second light emitter is between the fourth and fifth electrodes and overlaps at least one of the first or second electrodes. A third light emitter is between the first to fourth electrodes and the fifth electrode and overlaps at least one of the third or fourth electrodes. A charge generating is layer between the first and second light emitters and between the first and third light emitters. Color filters transmit light from the light emitters in different wavelength ranges.
Described herein is source sensitive optic that uses reconfigurable chip-on-board (CoB) light emitting diode (LED) arrays as light sources. In an implementation, the reconfigurable CoB LED array includes a predetermined number of LEDs that are configurable for a variety of illumination scenarios. In an implementation, the reconfigurable CoB LED array is multiple CoB LED arrays that are configured for use with the source sensitive optic as described herein. The source sensitive optic includes surface shapes that are responsive to the reconfigurable CoB LED array. The source sensitive optic is configured to provide beam profile and radiation pattern differentiation based on a CoB LED array configuration configured from the reconfigurable CoB LED. Each configurable CoB LED array configuration radiates a different beam pattern via the surface shapes due to proximity and surface shape geometries.
Some embodiments provide an image sensor pixel comprising a junction field effect transistor (JFET) and a floating diffusion configured to act as the gate of the JFET. An image sensor may comprise a plurality of pixels, at least one pixel comprising a floating diffusion region formed in a semiconductor substrate, a transfer gate configured to selectively cause transfer of photocharge stored in the pixel to the floating diffusion, and a JFET having (i) a source and a drain coupled by a channel region, and (ii) a gate comprising the floating diffusion region.
The present disclosure provides CMOS image sensors. A CMOS image sensor includes a substrate having a first region and a second region connecting with the first region at a first end of the first region; a transfer transistor formed on the surface of the substrate in the second region; a floating diffusion (FD) region formed in the surface of the substrate at one side of the transfer transistor in the second region; a third implanting region formed in the surface of the substrate 200 in the first region, being formed from a first implanting region; a second implanting region and an adjacent fifth implanting region formed under the third implanting region; and a fourth implanting region formed under the second implanting region and the fifth implanting region, being electrically connected with the third implanting region by the fifth implanting region.
An amplifier includes a cascode structure comprising a first transistor having first characteristics coupled to a second transistor having second characteristics different than the first characteristics, the first transistor formed with the second transistor on a single diffusion.
Semiconductors and methods of manufacturing semiconductors are provided. A semiconductor can include a plurality of insulating layers, and a plurality of conductive layers, with the insulating layers and the conductive layers alternately stacked. A plurality of through electrodes penetrate the conductive layers. At least some the through electrodes are electrically connected to one of the conductive layers. In addition, different conductive layers are connected to different through electrodes. A method of forming a semiconductor structure includes providing a plurality of antifuses, wherein each of the through electrodes is separated from each of the conductive layers by an antifuse. The method further includes supplying at least a first voltage to a first through electrode while applying less than a second voltage to the other electrodes, wherein the first voltage is greater than the second voltage.
Methods of maintaining a state of a memory cell without interrupting access to the memory cell are provided, including applying a back bias to the cell to offset charge leakage out of a floating body of the cell, wherein a charge level of the floating body indicates a state of the memory cell; and accessing the cell.
An impurity source film is formed along a portion of a non-planar semiconductor fin structure. The impurity source film may serve as source of an impurity that becomes electrically active subsequent to diffusing from the source film into the semiconductor fin. In one embodiment, an impurity source film is disposed adjacent to a sidewall surface of a portion of a sub-fin region disposed between an active region of the fin and the substrate and is more proximate to the substrate than to the active area.
Semiconductor structures and fabrication methods thereof are provided. An exemplary fabrication method includes providing a semiconductor substrate having a first region, a second region and an isolation region between the first region and the second region; forming a plurality of first fins on the semiconductor substrate in the first region and a plurality of second fins on the semiconductor substrate in the second region; forming an isolation structure, covering portions of side surfaces of the first fins and the second fins and with a top surface below the top surfaces of the first fins and the second fins, over the semiconductor substrate; and forming an isolation layer over the isolation structure in the isolation region and with a top surface coplanar or above the top surfaces of the first fins and the second fins.
Methods of forming a high voltage ESD GGNMOS using embedded gradual PN junction in the source region and the resulting devices are provided. Embodiments include a device having a substrate including a device region with an ESD protection circuit; a gate over the device region; a source region in the device region having a N+ implant and a P+ implant laterally separated on a first side of the gate; and a drain region in the device region on a second side of the gate, opposite the first.
A display device using a semiconductor light emitting device and a fabrication method thereof is disclosed. A display device includes a plurality of semiconductor light emitting device packages; a wiring substrate coupled to the plurality of semiconductor light emitting device packages; and a plurality of wiring electrodes. A semiconductor light emitting device package includes a plurality of semiconductor light emitting devices; a support substrate coupled to the plurality of semiconductor light emitting devices; and a conversion layer configured to convert a color of light emitted from at least some of the plurality of semiconductor light emitting devices to a different color, forming a red sub-pixel, a green sub-pixel, and a blue sub-pixel. A semiconductor light emitting device corresponding to the red or green sub-pixel and a semiconductor light emitting device corresponding to the blue sub-pixel may have light emitting areas that are of different sizes.
A display device is provided. The display device includes a substrate having a surface including a display area and a non-display area adjacent to the display area; a plurality of light-emitting diodes disposed on the display area of the substrate, wherein the light-emitting diode includes a contact electrode; and an anisotropic conductive layer disposed between the substrate and the plurality of light-emitting diodes, wherein the anisotropic conductive layer has a cross-sectional sidewall profile, and at least a part of the cross-sectional sidewall profile of the anisotropic conductive layer is in a shape of curve.
The method of producing an interposer-chip-arrangement, comprises providing an interposer (1) with an integrated circuit (25), arranging a dielectric layer (2) with metal layers embedded in the dielectric layer above a main surface (10) of the interposer, connecting the integrated circuit with at least one of the metal layers, forming an interconnection (7) through the interposer, the interconnection contacting one of the metal layers, arranging a further dielectric layer (3) above a further main surface (11) of the interposer opposite the main surface and arranging a further metal layer in or on the further dielectric layer, the further metal layer being connected with the interconnection, arranging a chip provided with at least one contact pad at the main surface or at the further main surface, and electrically conductively connecting the contact pad with the interconnection.
A package structure and a method of manufacturing the same are provided. The package structure includes a first die, a second die, a first encapsulant, a bridge, an underfill layer and a RDL structure. The first die and the second die are placed side by side. The first encapsulant encapsulates sidewalls of the first die and sidewalls of the second die. The bridge electrically connects the first die and the second die through two conductive bumps. The underfill layer fills the space between the bridge and the first die, between the bridge and the second die, and between the bridge and a portion of the first encapsualnt. The RDL structure is located over the bridge and electrically connected to the first die and the second die though a plurality of TIVs. The bottom surfaces of the two conductive bumps are level with a bottom surface of the underfill layer.
A stack type sensor package structure includes a substrate, a semiconductor chip disposed on the substrate, a frame disposed on the substrate and aside the semiconductor chip, a sensor chip disposed on the frame, a plurality of wires electrically connecting the sensor chip and the substrate, a transparent layer being of its position corresponding to the sensor chip, a support maintaining the relative position between the sensor chip and the transparent layer, and a package compound disposed on the substrate and partially covering the frame, the support, and the transparent layer. Thus, through disposing a frame within the stack type sensor package structure, the structural strength of the overall sensor package structure is reinforced, and the stability of the wiring of the sensor chip is effectively increased.
In an embodiment, a device includes: a first device including: an integrated circuit device having a first connector; a first photosensitive adhesive layer on the integrated circuit device; and a first conductive layer on the first connector, the first photosensitive adhesive layer surrounding the first conductive layer; a second device including: an interposer having a second connector; a second photosensitive adhesive layer on the interposer, the second photosensitive adhesive layer physically connected to the first photosensitive adhesive layer; and a second conductive layer on the second connector, the second photosensitive adhesive layer surrounding the second conductive layer; and a conductive connector bonding the first and second conductive layers, the conductive connector surrounded by an air gap.
A fan-out semiconductor package module includes: a fan-out semiconductor package including a first interconnection member having a through-hole, a semiconductor chip disposed in the through-hole, an encapsulant encapsulating at least portions of the first interconnection member and the semiconductor chip, a second interconnection member disposed on the first interconnection member and the semiconductor chip, a third interconnection member disposed on the encapsulant, first connection terminals disposed on the second interconnection member, and second connection terminals disposed on the third interconnection member, the first to third interconnection members including, respectively, redistribution layers electrically connected to connection pads of the semiconductor chip; and a component package stacked on the fan-out semiconductor package and including a wiring substrate connected to the second interconnection member through the first connection terminals and a plurality of mounted components mounted on the wiring substrate.
A method for use with multiple chips, each respectively having a bonding surface including electrical contacts and a surface on a side opposite the bonding surface involves bringing a hardenable material located on a body into contact with the multiple chips, hardening the hardenable material so as to constrain at least a portion of each of the multiple chips, moving the multiple chips from a first location to a second location, applying a force to the body such that the hardened, hardenable material will uniformly transfer a vertical force, applied to the body, to the chips so as to bring, under pressure, a bonding surface of each individual chip into contact with a bonding surface of an element to which the individual chips will be bonded, at the second location, without causing damage to the individual chips, element, or bonding surface.
A semiconductor package is provided. The semiconductor package includes a package substrate having a first region and a second region defined between an edge of the package substrate and an edge of the first region, a semiconductor die disposed on the package substrate in the first region, a conductive shielding element disposed on the package substrate and covering the semiconductor die, and a three-dimensional (3D) antenna. The 3D antenna includes a planar structure portion disposed on the package substrate in the second region, and a bridge structure portion above the planar structure portion and connected thereto.
A semiconductor device comprises non-quadrangular metal regions in the last metallization layer and/or non-quadrangular contact pads, wherein, in some illustrative embodiments, an interdigitating lateral configuration may be obtained and/or an overlap of the contact pads with underlying metal regions may be provided. Consequently, mechanical robustness of the contact pads and the passivation material under the underlying interlayer dielectric material may be increased, thereby suppressing crack formation and crack propagation.
In various embodiments, a die is provided. The die may include a die body, and at least one of a front side metallization structure on a front side of the die body and a back side metallization structure on a back side of the die body such that the die is plane or includes a positive radius of curvature at a die attach process temperature range.
A system and method for preventing cracks is provided. An embodiment comprises placing crack stoppers into a connection between a semiconductor die and a substrate. The crack stoppers may be in the shape of hollow or solid cylinders and may be placed so as to prevent any cracks from propagating through the crack stoppers.
A method and apparatus for forming a semiconductor structure is provided. The semiconductor structure comprises a stacked fin structure formed on a surface of a first insulator layer. The stacked fin structure comprises a first doped semiconductor fin portion and a second doped semiconductor fin portion. The anti-fuse structure further comprises a first highly doped diamond shaped epitaxial structure grown about the first semiconductor fin portion and a second diamond shaped highly doped epitaxial structure grown about the second semiconductor fin portion. The first highly doped epitaxial structure has a lower-most apex overlying and aligned with an upper-most apex of the second highly doped epitaxial structure. The lower-most apex is separated from the upper-most apex by a gap. A second insulating layer formed about the first highly-doped epitaxial structure and the second highly-doped epitaxial structure, wherein the second insulator layer fills the gap.
IC device structures including a lateral compound resistor disposed over a surface of a substrate, and fabrication techniques to form such a resistor in conjunction with fabrication of a transistor. Rather than being stacked vertically, a compound resistive trace may include a plurality of resistive materials arranged laterally over a substrate. Along a resistive trace length, a first resistive material is in contact with a sidewall of a second resistive material. A portion of a first resistive material along a centerline of the resistive trace may be replaced with a second resistive material so that the second resistive material is embedded within the first resistive material.
A method of manufacturing a semiconductor structure including a conductive structure, a dielectric layer, and a plurality of conductive features is disclosed. The dielectric layer is formed on the conductive structure. A plurality of through holes is formed in the dielectric layer using a metal hard mask, and at least one of the through holes exposes the conductive structure. The conductive features are formed in the through holes. At least one of the conductive features has a bottom surface and at least one sidewall. The bottom surface and the sidewall of the conductive feature intersect to form an interior angle. The interior angles of adjacent two of the conductive features have a difference less than or substantially equal to about 3 degrees.
A carrier base material-added wiring substrate includes a wiring substrate and a carrier base material. The wiring substrate includes an insulation layer, a wiring layer arranged on a lower surface of the insulation layer, and a solder resist layer that covers the lower surface of the insulation layer and includes an opening that exposes a portion of the wiring layer as an external connection terminal. The carrier base material is adhered by an adhesive layer to the solder resist layer. The carrier base material includes an opening that is in communication with the opening of the solder resist layer and exposes the external connection terminal. The opening of the carrier base material has a diameter that is smaller than that of the opening of the solder resist layer.
A semiconductor device includes a semiconductor element, a lead on which the semiconductor element is mounted, a bonding member fixing the semiconductor element to the lead, and a resin package enclosing the semiconductor element and a portion of the lead. This lead is formed with a groove recessed at a location spaced from the semiconductor element. The groove has first and second inner surfaces, where the first inner surface is closer to the semiconductor element than is the second inner surface. The angle the first inner surface forms with respect to the thickness direction of the semiconductor element is smaller than the angle the second inner surface forms with respect to the thickness direction.
According to one embodiment, a semiconductor package includes a die pad, a semiconductor chip, a lead frame, and an insulating part. The semiconductor chip is provided on the die pad. The lead frame is separated from the die pad. The lead frame is electrically connected to a terminal of the semiconductor chip. The lead frame includes a first part and a second part disposed between the first part and the die pad. An upper surface of the first part is located below an upper surface of the second part. The insulating part is provided on the die pad, the semiconductor chip, and the second part. The insulating part seals the semiconductor chip.
A semiconductor structure with a through silicon via includes a substrate having a front side and a back side. The through silicon via penetrates the substrate. A device is disposed on the front side of the substrate. Numerous dielectric layers cover the front side. A first test pad for testing the device is disposed on the front side of the substrate. A second test pad for testing the through silicon via is disposed on the back side of the substrate. A method of fabricating and testing the semiconductor structure is also provided.
A method includes forming a gate stack over a semiconductor fin, wherein the semiconductor fin forms a ring, and etching a portion of the semiconductor fin not covered by the gate stack to form a recess. The method further includes performing an epitaxy to grow an epitaxy semiconductor region from the recess, forming a first contact plug overlying and electrically coupled to the epitaxy semiconductor region, and forming a second contact plug, wherein the second contact plug is overlying and electrically coupled to the gate stack.
Gate aligned contacts and methods of forming gate aligned contacts are described. For example, a method of fabricating a semiconductor structure includes forming a plurality of gate structures above an active region formed above a substrate. The gate structures each include a gate dielectric layer, a gate electrode, and sidewall spacers. A plurality of contact plugs is formed, each contact plug formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. A plurality of contacts is formed, each contact formed directly between the sidewall spacers of two adjacent gate structures of the plurality of gate structures. The plurality of contacts and the plurality of gate structures are formed subsequent to forming the plurality of contact plugs.
A method of forming a semiconductor structure is provided. A conductive layer is formed over a substrate. The conductive layer is selectively etched to form a first conductive portion, a second conductive portion, and a spacing between the first conductive portion and the second conductive portion. A dielectric layer is formed over the first conductive portion, the second conductive portion, and the spacing, such that an air gap is formed in the spacing between the first and second conductive portions and is sealed by the dielectric layer.
A method includes forming a dielectric layer, forming a photo resist over the dielectric layer, forming a first mask layer over the photo resist, and forming a second mask layer over the first mask layer. A first-photo-first-etching is performed to form a first via pattern in the second mask layer, wherein the first-photo-first-etching stops on a top surface of the first mask layer. A second-photo-second-etching is performed to form a second via pattern in the second mask layer, wherein the second-photo-second-etching stops on the top surface of the first mask layer. The first mask layer is etched using the second mask layer as an etching mask. The photo resist and the dielectric layer are etched to simultaneously transfer the first via pattern and the second via pattern into the dielectric layer.
A mounting table includes an electrostatic chuck having a mounting surface and a backside opposite to the mounting surface, a first through hole being formed in the mounting table; a base joined to the backside of the electrostatic chuck and having a second through hole in communication with the first through hole; a lifter pin which is received in a pin hole formed by the first through hole and the second through hole, the lifter pin being movable up and down to protrude beyond and retract below the mounting surface. An upper end portion of the lifter pin has a shape in which a diameter decreases toward a lower end of the lifter pin to correspond to a shape of the upper end portion of the pin hole. The upper end portion of the lifter pin is in surface contact with the upper end portion of the pin hole.
A thermal system includes multiple thermal elements, multiple power lines, and a control system. Each of the thermal elements define a resistor and a current limiting device, and the thermal elements include at least a first subset of parallel thermal elements and at least a second subset of parallel thermal elements. The current limiting devices in a given subset of parallel thermal elements have opposite polarity from each other. The multiple power lines are connected to the plurality of thermal elements. The power lines are configured in pairs for providing power to the first subset and the second subset of parallel thermal elements. The control system is configured to selectively apply power to the first subset and the second subset of parallel thermal elements by way of the power lines.
A structure and method of forming are provided. The structure includes a dielectric layer disposed on a substrate. The structure includes a cavity in the dielectric layer, and a plurality of contacts positioned in the cavity and bonded to the substrate. A component is bonded to the plurality of contacts. Underfill is disposed in the cavity between the dielectric layer and the component. A plurality of connectors is on the dielectric layer, the connectors being connected through the dielectric layer to a conductor that is at a same level of metallization as the plurality of contacts.
An integrated circuit element and a fabrication method thereof, a circuit board, a display panel and a display device are provided, to reduce space occupied by the integrated circuit element and facilitate achieving intelligent transparent display by arranging the integrated circuit element in a display. The integrated circuit element includes a base plate, and a bare integrated circuit chip and multiple connection parts arranged on the base plate. The bare integrated circuit chip includes multiple connection points that are respectively electrically connected to the multiple connection parts.
A method is disclosed for analyzing ions by mass spectrometry by repeatedly executing a data acquisition cycle to acquire product ion data across a precursor mass range of interest. The data acquisition cycle comprises performing, for each of a plurality of isolation windows having different mass ranges, steps of (i) isolating precursor ions within the mass range of the isolation window, (ii) fragmenting the isolated precursor ions to generate product ions, and (iii) mass analyzing the product ions. The step of mass analyzing the product ions includes concurrently mass analyzing product ions corresponding to N isolation windows, N being an integer greater than or equal to one, wherein N is changed at least once across the data acquisition cycle.
Systems and methods for determining wafer bias are described. One of the methods includes detecting output of a generator to identify a generator output complex voltage and current (V&I). The generator is coupled to an impedance matching circuit and the impedance matching circuit is coupled to an electrostatic chuck (ESC). The method further includes determining from the generator output complex V&I a projected complex V&I at a point along a path between an output of a model of the impedance matching circuit and a model of the ESC. The operation of determining of the projected complex V&I is performed using a model for at least part of the path. The method includes applying the projected complex V&I as an input to a function to map the projected complex V&I to a wafer bias value at the ESC model.
In one embodiment, a blanking aperture array is for a multi-charged particle beam writing apparatus. The blanking aperture array includes a substrate and a plurality of blankers. Each of the plurality of blankers includes a blanking electrode and a ground electrode that are formed on a first surface of the substrate. The plurality of blankers includes at least a normal blanker which is capable of applying a predetermined voltage between the blanking electrode and the ground electrode and for which a through hole bored through the substrate is formed, and a defective blanker which is not capable of applying the predetermined voltage between the blanking electrode and the ground electrode and for which the through hole bored through the substrate is filled with a beam shield.
An arrangement for an electric switching device is disclosed. The arrangement for an electric switching device comprises a switching unit having a first switching position and a second switching position, a restoring element exerting a restoring force on the switching unit in the second switching position, and a return spring fastened to the switching unit and exerting a counterforce on the switching unit. The restoring force is directed toward the first switching position, while the counterforce acts opposite to the restoring force.
A power supply apparatus is disclosed. The power supply apparatus to supply power to an electronic apparatus includes a first relay and a second relay which are turned on and off to control power supply with respect to the electronic apparatus, and a processor configured to control a switching operation of the first relay and the second relay based on at least one of a connection detection signal indicating connection of the power supply apparatus and the electronic apparatus, and a power on/off signal indicating a power on/off command with respect to the electronic apparatus.
A device for controlling multiple functions includes a switch panel. The switch panel includes control panels extending along a longitudinal extension of the switch panel. The switch panel is pivotably mounted about an axis of rotation parallel with the longitudinal extension to pivot about the axis of rotation in response to manual actuation of the switch panel by manual actuation of the control panels. The switch panel is movable with respect to the longitudinal extension of the switch panel and is fixed with respect to a transverse extension of the switch panel perpendicular to the longitudinal extension. Force sensors respectively associated with the control panels are distributed along the longitudinal extension of the switch panel. Actuation of the switch panel by actuating one of the control panels triggers a function depending on which one control panel is actuated and the force sensors detect which control panel is actuated.
A capacitor and a method of making a capacitor, is provided with improved reliability performance. The capacitor comprises an anode; a dielectric on the anode; and a cathode on the dielectric wherein the cathode comprises a conductive polymer and a polyanion wherein the polyanion is a copolymer comprising groups A, B and C represented by Formula AxByCz as described herein.
A method for producing an electrolytic capacitor according to the present disclosure includes a first step of preparing a capacitor element that includes an anode body having a dielectric layer; a second step of impregnating the capacitor element with a first treatment solution containing at least a conductive polymer and a first solvent; and a third step of impregnating, after the second step, the capacitor element, in which at least a part of the first solvent remains, with a second treatment solution containing a coagulant to coagulate the conductive polymer.
A multilayer electronic component and a method of manufacturing the same are provided. The multilayer electronic component includes a body including a multilayer structure in which first internal electrode patterns and second internal electrode patterns different from the first internal electrode patterns are alternately stacked and containing a dielectric material. First and second side parts are disposed on respective outer surfaces of a first pair of opposing outer surfaces of the body. First and second external electrodes are disposed on respective outer surfaces of a second pair of opposing outer surfaces of the body, and the first and second external electrodes are electrically connected to the first and second internal electrode patterns, respectively. The first internal electrode patterns are exposed to the outer surfaces of the first pair of outer surfaces of the body on which the first and second side parts are disposed.
In a multilayer capacitor, a multilayer capacitor main body includes first and second main surfaces, first and second side surfaces, and first and second end surfaces, the first and second main surfaces extending in a length direction and a width direction, the first and second side surfaces extending in the length direction and a thickness direction, and the first and second end surfaces extending in the width direction and the thickness direction. The second main surface is depressed in a portion extending from opposite ends of the second main surface toward a center of the second main surface in the length direction.
A multilayer ceramic capacitor includes: a multilayer structure in which each of a plurality of ceramic dielectric layers and each of a plurality of internal electrode layers including a co-material are alternately stacked, wherein a Mo concentration in the co-material is smaller than that in a ceramic grain in the ceramic dielectric layer.
An electronic component is able to be mounted on a mounting substrate including a pair of first edge portions that faces each other, and a pair of second edge portions that is perpendicular or substantially perpendicular to the pair of first edge portions and faces each other. The mounting substrate has a structure that allows at least any one of the electronic component, a first electronic component, and a second electronic component, to be mounted thereon. When a dimension of the first electronic component in a length direction is designated as L1, a dimension of the first electronic component in a width direction is designated as W1, a dimension of the second electronic component in the length direction is designated as L2, and a dimension of the second electronic component in the width direction is designated as W2, a dimension of the electronic component in the width direction is any one of W1 and W2. A dimension of the electronic component in the length direction is L2 when the dimension of the electronic component in the width direction is W1, and is L1 when the dimension of the electronic component in the width direction is W2.
This disclosure provides systems, methods and apparatus including a magnetic flux device configured to transmit or receive magnetic flux to or from a space beyond the magnetic flux device. In certain configurations, the magnetic flux device can include a first coil with a first layer and second layer, a second coil with a third layer and fourth layer, and a magnetically permeable material with the first coil extending over a first edge of the magnetically permeable material and the second coil extending over a second edge of the magnetically permeable material. In certain other configurations, the magnetic flux device can include a first conductive structure including a first coil and a second coil enclosing a first area and a second area, respectively. The magnetic flux device can further include a second conductive structure with at least a first planar portion of the first conductive structure being substantially coplanar with a second planar portion of the second conductive structure.
The present disclosure relates to a tank of a high-voltage generator including a tank body and a tank lid. There is an opening in the tank lid. The opening is connected to the bellows so as to counteract the volume change of the transformer oil and avoid generation of bubbles. The tank includes a positive transformer, a negative transformer, a bellows, and other components. The high-voltage winding is embedded in the PCBs. The outer insulating bushing is covered by the PCBs so as to improve the insulativity between the turns of the high-voltage winding. In addition, oil barriers may be placed between the positive and the negative transformers, or between the transformers and the ground so as to eliminate the bridge breakdown effect and make the electric field uniform. By means of said measures, the present disclosure improves the stability of the high-voltage generator.
A multilayer common mode filter includes a first coil, a second coil and a third coil. The first coil includes a first coil conductor and a second coil conductor having spiral shapes and is configured by electrically connecting the first coil conductor and the second coil conductor. The second coil includes a third coil conductor and a fourth coil conductor having spiral shapes and is configured by electrically connecting the third coil conductor and the fourth coil conductor. The third coil includes a fifth coil conductor and a sixth coil conductor having spiral shapes and is configured by electrically connecting the fifth coil conductor and the sixth coil conductor. The first to sixth coil conductors are disposed in order of the first coil conductor, the third coil conductor, the fifth coil conductor, the second coil conductor, the fourth coil conductor, and the sixth coil conductor in a first direction.
The present invention is in the field of fluids and the like comprising magnetic particles, such as ferromagnetic particles, anti-ferromagnetic particles, ferrimagnetic particles, synthetic magnetic particles, paramagnetic particles, superparamagnetic particles, such as magnetic fluids, a method of stabilizing magnetic particles, use of these fluids and functionalized particles. Such fluids have a large variety of applications, such as sealants, as a sensor, in biomedics, etc.
A treatment solution is applied on a surface of a base iron; and the treatment solution is baked and dried. The treatment solution contains a first component: 100 parts by mass in solid content, and a second component composed of particles of one or more kinds selected from a group consisting of a polyolefin wax, an epoxy resin and an acrylic resin, the particles having an average particle size of 2.0 μm to 15.0 μm and a melting point of 60° C. to 140° C.: 5 parts by mass to 45 parts by mass in resin solid content. The first component contains a colloidal silica: 100 parts by mass, and an emulsion of one kind selected from a group consisting of an acrylic resin, an epoxy resin and a polyester resin which have an average particle size of 0.05 μm to 0.50 μm, or an emulsion of a mixture or copolymer of two or three kinds selected from the group: 40 parts by mass to 400 parts by mass in resin solid content.
An object of the present invention is to make it easy to bind a plurality of electric wires together. An electric wire bundle includes an electric wire group and a binding portion. The electric wire group includes a bundle portion in which at least a portion of a plurality of electric wires in an extension direction is bundled together. The binding portion formed by supplying a fluid binding portion forming material to an outer circumferential portion of the bundle portion in strip-shape in a form in which the bundle portion can be maintained in a bundled state and curing the binding portion forming material. Such a bundle can be formed by discharging the fluid binding portion forming material from a nozzle to the circumference of a bundle portion of a plurality of electric wires supported by an electric wire supporting portion, and curing the fluid binding portion forming material.
A single cell apparatus and method for single ion addressing are described herein. One apparatus includes a single cell configured to set a frequency, intensity, and a polarization of a laser, shutter the laser, align the shuttered laser to an ion in an ion trap such that the ion fluoresces light and/or performs a quantum operation, and detect the light fluoresced from the ion.
A method of decontaminating metal surfaces in a cooling system of a nuclear reactor comprises: an oxidation step, comprising at least one acidic oxidation step and at least one alkaline oxidation step wherein metal oxides and radioisotopes on the metal surfaces are contacted with aqueous permanganate oxidant solutions; followed by a decontamination step wherein an aqueous solution comprising oxalic acid, formic acid, citric acid, tartaric acid, picolinic acid, gluconic acid glyoxylic acid or mixtures thereof is used to dissolve at least part of the metal oxides and radioisotopes; and a cleaning step wherein radioisotopes are immobilized on an ion exchange resin; wherein at least one treatment cycle includes a high temperature oxidation step, wherein the permanganate oxidant solution is kept at a temperature of at least 100° C.
Various illustrative embodiments of a system, method and related devices for coding of a medical procedure for a patient are disclosed. The disclosed subject matter seeks to improve the operational flow of hospital billing for medical procedures, including but not limited to those procedures generally performed in the cardiac catheterization laboratory, interventional or endovascular suite or hospital operating room such as those relating to interventional radiology, interventional cardiology, electrophysiology, vascular surgery, pacemakers and implantable defibrillators, and biliary and central venous access devices.
Apparatus for plotting pathological diagnoses on anatomical diagrams is provided. The apparatus may include a mapping tool. The mapping tool may identify a plurality of biopsy marker records including a received criterion. The mapping tool may identify a body part image associated with a body part image ID. The mapping tool may section the body part image into a first quadrant and a second quadrant. The mapping tool may loop through the plurality of biopsy marker records to identify an X,Y coordinate associated with each of the plurality of biopsy marker records. For each X,Y coordinate identifying a location within the first quadrant, the mapping tool may iteratively tally a first count for the first quadrant. For each X,Y coordinate identifying a location within the second quadrant, the mapping tool may iteratively tally a second count for the second quadrant.
Healthcare transaction validation systems and methods are presented. Healthcare transactions associated with a stakeholder are compiled into a chain of healthcare transaction blocks. The chain can be considered a chronicle of person's healthcare path through life. When a transaction is conducted, the corresponding healthcare parameters (e.g., inputs, outputs, clinical evidence, outcomes, etc.) are sent to one or more validation devices. The devices establish a validity of the transaction and generate a new block via a proof-of-work principle. Once the new block has been calculated it can be appended to the stakeholder's health care blockchain.
This invention relates to QTL responsible for significantly increased firmness in tomato fruit in the cultivated plant producing said tomato fruit, compared to fruit from a control tomato plant which does not have said genetic elements. A cultivated tomato plant producing tomato fruit with significantly increased fruit firmness and a method for detecting QTLs linked to significantly increased fruit firmness are also provided.
A method and a system for determining bit values in a non-volatile memory having a number of cells each for storing a bit value are disclosed. The method includes the steps of: a) providing a first test sensing voltage to the cells and calculating a cell count; b) providing another test sensing voltage to the cells and calculating a difference of the cell counts between this step and previous step; c) providing still another test sensing voltage and calculating another difference of the cell counts between this step and previous step; d) processing step c) for N times; e) calculating differential amounts of cell counts and assigning an index number to each group of cells; f) choosing a voltage as an updated sensing voltage.
An object is to provide a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit. A pulse signal output circuit according to one embodiment of the disclosed invention includes first to tenth transistors. The ratio W/L of the channel width W to the channel length L of the first transistor and W/L of the third transistor are each larger than W/L of the sixth transistor. W/L of the fifth transistor is larger than W/L of the sixth transistor. W/L of the fifth transistor is equal to W/L of the seventh transistor. W/L of the third transistor is larger than W/L of the fourth transistor. With such a structure, a pulse signal output circuit capable of operating stably and a shift register including the pulse signal output circuit can be provided.
A memory device having an improved program speed may include a memory cell array including a plurality of memory cells, each being programmed to one of a plurality of program states; a peripheral circuit configured to perform a program operation to one or more of the plurality of memory cells, the program operation including a program voltage applying operation and a verify operation; and a control logic configured to control the peripheral circuit to simultaneously perform the verify operation for at least two program states by applying bit line voltages having different voltage levels to bit lines coupled to the plurality of memory cells.
A memory device comprising a main memory and a controller operably connected to the main memory. The main memory can comprise a plurality of memory addresses, each corresponding to a single one of a plurality of word lines. Each memory address can be included in a tracked subset of the plurality of memory addresses. Each tracked subset can include memory addresses corresponding to more than one of the plurality of word lines. The controller is configured to track a number of read operations for each tracked subset, and to scan, in response to the number of read operations for a first tracked subset exceeding a first threshold value, a portion of data corresponding to each word line of the first tracked subset to determine an error count corresponding to each word line of the first tracked subset.
Apparatuses and methods for charging a global access line prior to accessing memory are described. An example apparatus may include a memory array of a memory. A plurality of global access lines may be associated with the memory array. The global access line may be charged to a ready-access voltage before any access command has been received by the memory. The global access line may be maintained at the ready-access voltage during memory access operations until the receipt of a post-access command. The post-access command may reset the global access line to an inactive voltage.
A memory device includes a semiconductor column extending above a substrate, a first conductive layer on a first side of the semiconductor column, a second conductive layer on a second side of the semiconductor column, opposite to the first conductive layer, a third conductive layer above or below the first conductive layer and on the first side of the semiconductor column, a fourth conductive layer on the second side of the semiconductor column, opposite to the third conductive layer, and a bit line connected to the semiconductor column. During reading in which a positive voltage is applied to the bit line, first, second, third, and fourth voltages applied to the first, second, third, and fourth conductive layers, respectively, wherein the first voltage and the third voltage are higher than each of the second voltage and the fourth voltage, and the third voltage is higher than the first voltage.
Generally discussed herein are apparatuses and methods. One such apparatus includes a data line, a first memory cell and a first select transistor. The first transistor has a gate and is coupled between the data line and the first memory cell. The apparatus can include a second memory cell and a second select transistor having a gate. The apparatus can include a third select transistor having a gate. The second select transistor is coupled between the second memory cell and the third select transistor. The third select transistor is coupled between the second select transistor and a source. The apparatus can include a drive transistor coupled to both the gate of the first select transistor and the gate of the second select transistor or the gate of the third select transistor.
In one embodiment, an electronic device includes a power supply circuit that has a first switch circuit between a power supply line and a ground potential. The first switch circuit connects the power supply line to the ground potential upon receipt of a control signal that is supplied when a supply of power on the power supply line is cut off. A capacitor is connected between the power supply line and the ground potential. A second switch circuit is between the capacitor and the power supply line. The second switch circuit is configured to disconnect the capacitor from the power supply line upon receipt of the first control signal. A controller circuit is configured to supply the first control signal when the supply of power on the power supply line is cut off.
Various examples are provided examples related to resistive content addressable memory (RCAM) based in-memory computation architectures. In one example, a system includes a content addressable memory (CAM) including an array of cells having a memristor based crossbar and an interconnection switch matrix having a gateless memristor array, which is coupled to an output of the CAM. In another example, a method, includes comparing activated bit values stored a key register with corresponding bit values in a row of a CAM, setting a tag bit value to indicate that the activated bit values match the corresponding bit values, and writing masked key bit values to corresponding bit locations in the row of the CAM based on the tag bit value.
Apparatuses and methods for providing clocks in a semiconductor device are disclosed. An example apparatus includes a clock generating circuit configured to generate an output clock signal based on one of rising and trailing edges of first, second, third and fourth clock signals in a first mode, phases of the first, second, third and fourth clock signals being shifted to each other. The clock generating circuit is further configured to generate the output clock signal based on both of rising and trailing edges of fifth and sixth clock signals in a second mode.
Provided is a memory device capable of reducing power consumption. The memory device includes a plurality of memory cells; and a self refresh controller configured to perform a refreshing cycle, which includes a first time interval and a second time interval, for a plurality of number of times, the second time interval being longer than the first section, wherein the self refresh controller is configured to perform a burst refreshing operation during the first time interval and to perform a power supply controlling operation during the second time interval.
A magnetoresistive random-access memory (MRAM) is disclosed. The MRAM device includes a perpendicular magnetic tunnel junction device having a reference layer, a free layer, and a precessional spin current magnetic layer. A skyrmionic enhancement layer is provided adjacent to the free layer. The skyrmionic enhancement layer helps to initiate the switching of the free layer.
According to an embodiment, a semiconductor device includes a substrate, a connector, a volatile semiconductor memory element, multiple nonvolatile semiconductor memory elements, and a controller. A wiring pattern includes a signal line that is formed between the connector and the controller and that connects the connector to the controller. On the opposite side of the controller to the signal line, the multiple nonvolatile semiconductor memory elements are aligned along the longitudinal direction of the substrate.
An information processing apparatus that includes: a storing portion to store video data: and a display portion to display a first thumbnail generated by decoding the video data, wherein if a scroll instruction is received prior to completion of generation of the first thumbnail, the display portion displays a second thumbnail corresponding to the video data.
A video recording apparatus with a pre-event circulation recording function is provided. A limitation on memory capacity may be removed by recording a pre-event video directly on a nonvolatile storage medium, such as a hard disk drive (HDD), without using a buffer according to a circulation recording method during pre-event recording performed to record videos before and after an event occurs.
A method involves determining bit aspect ratios for interlaced tracks written to a magnetic recording medium. The interlaced tracks include top tracks that are written partially overlapping with bottom tracks. Isolated test tracks are written at first different bit aspect ratios to determine a top bit aspect ratio that achieves a first target areal density for the isolated test tracks. Test tracks are written at second different bit aspect ratios to determine a bottom bit aspect ratio that achieves a second target areal density for the test tracks. Top test tracks of the test tracks are written at the top bit aspect ratio. The top and bottom bit aspect ratios are selected to subsequently write partially-overlapping tracks on the magnetic recording medium.
A thermally assisted magnetic recording head has a waveguide that propagates laser light as propagating light; a main pole that has a first end portion on an air bearing surface (ABS) facing a magnetic recording medium and that emits a magnetic flux to the magnetic recording medium; a metal layer that is positioned between the main pole and the waveguide, that extends from a second end portion positioned on the ABS in a height direction, that generates surface plasmons from the propagating light, and that generates near-field light (NF light) from the surface plasmons at the second end portion; and a dielectric body layer that is surrounded by the metal layer and that extends from a third end portion positioned on the ABS in a height direction.
In described examples, a method for detecting voice activity includes: receiving a first input signal containing noise; sampling the first input signal to form noise samples; determining a first value corresponding to the noise samples; subsequently receiving a second input signal; sampling the second input signal to form second signal samples; determining a second value corresponding to the second signal samples; forming a ratio of the second value to the first value; comparing the ratio to a predetermined threshold value; and responsive to the comparing, indicating whether voice activity is detected in the second input signal.
Example embodiments disclosed herein relate to perception based multimedia processing. There is provided a method for processing multimedia data, the method includes automatically determining user perception on a segment of the multimedia data based on a plurality of clusters, the plurality of clusters obtained in association with predefined user perceptions and processing the segment of the multimedia data at least in part based on determined user perception on the segment. Corresponding system and computer program products are disclosed as well.
An information processing system that reads a current playback time of content reproduced by an output device; controls a display to display subtitle information corresponding to the content reproduced by the output device; acquires feature information corresponding to an attribute of the content based on the read current playback time of the content; and controls the display to apply a predetermined effect corresponding to the displayed subtitle information based on the acquired feature information.
Disclosed are a method and apparatus for encoding and decoding a high frequency for bandwidth extension. The method includes: estimating a weight; and generating a high frequency excitation signal by applying the weight between random noise and a decoded low frequency spectrum.
The invention provides a decoder being configured for processing an encoded audio bitstream, wherein the decoder includes: a bitstream decoder configured to derive a decoded audio signal from the bitstream, wherein the decoded audio signal includes at least one decoded frame; a noise estimation device configured to produce a noise estimation signal containing an estimation of the level and/or the spectral shape of a noise in the decoded audio signal; a comfort noise generating device configured to derive a comfort noise signal from the noise estimation signal; and a combiner configured to combine the decoded frame of the decoded audio signal and the comfort noise signal in order to obtain an audio output signal.
Approaches presented herein enable visualization of audio announcements using augmented reality (AR). Specifically, an audio system captures a set of broadcast audio announcements or messages at an originating location associated with a user as a set of audio files, which a speech-to-text transcriber transcribes to text. A natural language processing tool analyzes the transcribed text to determine, for each announcement, whether the announcement is relevant to the user. Relevant announcements are forwarded to a mobile device of the user. The user may access, in an AR environment, the set of announcements via a set of icons to display text of an announcement or to play audio of an announcement.
The present disclosure involves systems, software, and computer implemented methods for personalizing interactions within a conversational interface based on an input context. One example system performs operations including receiving a conversational input via a conversational interface associated with a particular user profile. The input is analyzed via a natural language processing engine to determine an intent and a personality input type. A persona response type associated with the determined personality input type is identified, and responsive content is determined. A particular persona associated with the particular user profile based on a related set of social network activity information associated with the user profile and that corresponds to the identified persona response type is identified. The responsive content is modified by applying persona-related content associated with the identified particular persona to generate a persona-associated response, and the persona-associated response is transmitted to a device associated with the particular user profile.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating responses using task-independent conversational systems.
A character string display method includes: acquiring character string data, the character string data being data corresponding to a to-be-displayed character string, and the character string including at least one character; analyzing the character string data to generate an analysis result, the analysis result including number of digit information related to the character string and digit sequence information of each character; and displaying, digit by digit according to the digit sequence information and the number of digit information, a picture set corresponding to each character, the picture set including at least one picture.
An image display device having a display panel, the device being utilized to form an image display system in which a plurality of the image display devices are arrayed in one or both of vertical and horizontal directions to display one image as a whole while an image allocated to each device is displayed via the corresponding display panel, the image display device includes a reading processing unit that reads out image information and delays start of output of this image information by a predetermined period of time determined based on the number of the image display devices which forms the image display system and a row to which the present device belongs in the vertical arrangement.
A gate driver on array (GOA) circuit of the present disclosure includes a current leakage limiting module. The current leakage limiting module limits current leakage of a first node to maintain a high level of the first node when an embedded touch display panel enters a stage in which signal interruption occurs and touch scanning is performed, further reducing risk of cascade failure and making the GOA circuit stable.
A display driver includes a driving circuit and a control circuit. An electro-optical panel includes plural sampling sections respectively provided for a predetermined number of plural source lines. The control circuit causes a relative time relationship between an ith graded output period of the driving circuit and an ith active period of an enable signal when a sampling operation is enabled for the ith sampling section to differ from a relative time relationship between a jth graded output period of the driving circuit and a jth active period of the enable signal when the sampling operation is enabled for the jth sampling section.
Provided is a display device including: a plurality of pixels, each of the pixels including: a first switching transistor including a gate electrode coupled to a scan line, a first electrode coupled to a data line, and a second electrode coupled to a first node; a first driving voltage transistor including a gate electrode coupled to the first node, and a first electrode coupled to a first driving voltage; a write transistor including a gate electrode coupled to a write line, a first electrode coupled to a second electrode of the first driving voltage transistor, and a second electrode coupled to a second node; a second switching transistor including a gate electrode coupled to the second node, a first electrode coupled to a first power voltage, and a second electrode coupled to an organic light emitting diode; and a first capacitor coupled between the first node and the second node.
When a display mode is a high-resolution mode, image display is performed by time division driving. When the display mode is a low-resolution mode, image display is performed by defining j pixel circuits arranged continuously in a direction in which scanning signal lines extend as one group, bringing only one organic EL element into a light-emitting state in each of the pixel circuits in a frame period, and bringing organic EL elements having respective light emission colors different from one another into a light-emitting state in the j pixel circuits included in each group in the frame period. Pixel circuits in a display unit are configured such that the intervals of organic EL elements which go into a light-emitting state in the frame period when in the low-resolution mode are equalized regarding a direction in which the scanning signal lines extend.
Provided is a gate driving circuit, coupled to a pixel array having multiple gate lines. The gate driving circuit includes multiple shift registers and multiple pull-up transistor, coupled to the pixel array and separately located on two opposite sides of the pixel array. Shift registers located on a same side are sequentially coupled to each other. An nth (n is a positive integer) pull-up transistor includes: a control end, coupled to a control end of a driving transistor of an (n−1)th shift register located on a same side as the nth pull-up transistor; a first end, used to receive a clock signal, where the clock signal is further input to an nth shift register of the shift registers located on an opposite side of the nth pull-up transistor; and a second end, coupled to an nth gate line of the pixel array and used to drive the nth gate line.
A drill guide device comprising a speed detection device for measuring speed of a drill bit used by the device for drilling an object surface during a hand drilling operation; a force detection device for measuring force applied by the drill bit on the object during the hand drilling operation; an alignment detection device for detecting alignment of the drill bit with respect to the object surface during the hand drilling operation; a user interface connected to the speed detection device, the force detection device and the alignment detection device adapted to communicate to a user information related to the speed, the force and the alignment of the drill bit during the hand drilling operation. The drill guide device is preferably used for training technicians on hand drilling the object surface using a required range of force, speed and alignment, particularly muscle memory training of technicians on these required parameters.
An examination processing system for use with a corresponding mobile device associated with a user taking an examination is operable to receive calculator parameter data from an examination server via a network. An interactive calculator interface is displayed on the mobile device, and the interactive calculator interface performs an approved set of calculator functions indicated by the calculator parameter data. An unapproved activity notification is generated for transmission to the examination server via the network in response to detecting unapproved activity on the mobile device.
A camera monitoring system for a vehicle includes a plurality of cameras disposed around an exterior of a vehicle. An image processing module communicates with the plurality of cameras, generating overhead view images from raw images taken by at least one of the plurality of cameras. A histogram module communicates with the image processing module, generating at least one histogram from the overhead view images. A likelihood module communicates with the histogram module and determines a likelihood of blockage for at least one of the plurality of cameras. A line alignment module communicates with the likelihood module and the image processing module to determine whether a trajectory of detected feature points in a selected camera aligns with a trajectory of detected feature points in an adjacent camera. A reporting module communicates with the line alignment module and reports a camera blockage status to at least one vehicle system or controller.
The invention relates to a method for diagnosing a sensor (16, 17) of a motor vehicle (10) designed to detect road infrastructures (101, 102, 103, 104), the said motor vehicle comprising a means of communication (18) designed to communicate with a remote server (50) and a computer (14) connected to the sensor and to the means of communication. According to the invention, the diagnostic method comprises steps during which: a) the computer identifies an infrastructure and assigns it an effective score, which relates to the visibility of this infrastructure, b) the remote server acquires a reference score which is assigned to the said infrastructure and which relates to the visibility of this infrastructure, and c) the effective score and the reference score are compared so as to deduce from this a state of operation of the sensor.
A method includes receiving location data of a monitoring device when carried by a user and receiving motion data of the monitoring device. The motion data is associated with a time of occurrence and the location data. The method includes processing the received motion data to identify a group of the motion data having a substantially common characteristic and processing the location data for the group of the motion data. The group of motion data by way of processing the location data provides an activity identifier. The motion data includes metric data that identifies characteristics of the motion data. The method includes transferring the activity identifier and the characteristics of the motion data to a screen of a device for display. The activity identifier being a graphical user interface that receives an input for rendering more or less of the characteristics of the motion data.
Apparatuses, methods, systems, and program products are disclosed for identifying and individual based on an electronic signature. A method includes detecting an individual based on input from one or more sensors. The method also includes determining an electronic signature associated with the detected individual. The method further includes reporting the determined electronic signature in response to determining that the detected individual is an unknown individual.
One variation of a method for collecting and sharing substantially real-time video feeds of employees within a distributed workforce includes: distributing a first subset of employee video feeds to a first instance of an employee portal; distributing a second subset of employee video feeds to a second instance of the employee portal; distributing the manager video feed to the first instance and the second instance of the employee portal; distributing the set of employee video feeds to an instance of the manager portal; in response to initiation of a recess for the first employee: replacing the first employee video feed with a recess icon in the second instance of the employee portal and the instance of the manager portal; initiating a timer for the recess; and in response to expiration of the timer, reactivating the first employee video feed.
An anti-theft proximity alert system that includes a wearable smart charm with a charm housing, and an object monitor with a housing, an environmental sensor to detect an ambient environmental condition, and a controller with at least one environmental operating instruction to adjust the output of a sensory alert based upon detected environmental conditions.
A system includes a wearable electronic device and a strap operatively connected to the wearable electronic device. The strap is configured to allow a user to wear the wearable electronic device on a body part. The system also includes an actuator connected to the strap, and a processor in signal communication with the wearable electronic device and the actuator. The processor is configured to receive a first signal from the wearable electronic device and send a second signal, based on the first signal, to the actuator to cause the strap to move relative to the wearable electronic device and provide a haptic effect to the user.
Methods and systems for augmentative and alternative communication are disclosed. An example method can comprise receiving a candidate input, classifying the candidate input as an intentional input, and generating a signal in response to the intentional input.
A monitoring system for monitoring casino gaming devices through a casino network is disclosed. The monitoring includes casino gaming devices configured to generate performance data and transmit the data corresponding to the monitored usage of the casino gaming devices over a casino network, a monitoring server configured to store and manage a database including the game data received from the casino gaming devices, and an operator station configured to retrieve and display the game data on a graphical user interface having icons that display real-time operational parameters of the casino gaming devices. A related method for gathering and maintaining operational performance indicators for a plurality of casino table devices operably coupled to a casino network including a middleware server and a client terminal is also disclosed.
A casino wagering game is played with a progressive jackpot and a second bonus event. At least one player places a wager to play a casino wagering game. The at least one player places a second wager that is optionally varying in amount wagered at the election of the player. The second wager enters both the progressive jackpot event and the second bonus event. The casino retains a portion of the second wager to become part of the progressive jackpot, while the second wager also is required to enter the at least one player in the second bonus event.
The gaming system disclosed herein enables a player to simultaneously or concurrently play a plurality of games at a gaming device regardless or independent of if the gaming device accounting system in communication with the gaming device is configured to support such simultaneous or concurrent game play. The gaming system disclosed herein additionally or alternatively enables a player to simultaneously play a plurality of games wherein certain of the games are eligible to operate with a remote host and certain of the games are ineligible to operate with the remote host.
In-vehicle units are on host vehicles including a subject vehicle and at least one nearby vehicle. Each in-vehicle unit transmits and receives information using inter-vehicle communication, acquires information indicating state of a control system controlling operation of each in-vehicle unit, generates an index data-item including an index value indicating state of the control system based on the acquired information, and transmits the generated index data-item using inter-vehicle communication. A subject in-vehicle unit in the subject vehicle includes: a communication processing section acquiring an index data-item from the nearby vehicle; a determination criterion specification section successively specifying a self-unit determination criterion being a determination criterion determining whether the control system in the subject in-vehicle unit operates normally, based on the index data-item; and a self-unit diagnosis test section determining whether the control system in the subject in-vehicle unit operates normally by comparing the self-unit determination criterion with the index data-item in the subject in-vehicle unit.
A method and system for detecting motor vehicle damage is described which includes a sensor to detect damage to a motor vehicle component from a plurality of motor vehicle components. A network interface is provided to transmit an indication of the detected damage, the indication including an identifier associated with the damaged motor vehicle component. Also provided is a data store to store the indication of the detected damage.
A display device for providing a virtual reality service is provided. The display device includes: a display configured to display a stereoscopic image; a user interface configured to receive a user command for enlarging or shrinking the stereoscopic image; and a processor configured to adjust a three-dimensional effect for the stereoscopic image to correspond to the user command when the user command is input, and control the display to display an enlarged image or a shrunk image in which the three-dimensional effect is adjusted.
An augmented reality presentation system directs a sensor included within an augmented reality projection device to capture an image of a portion of a real-world environment included within a field of view of the sensor. As the sensor captures the image, the system determines that a target object located within the real-world environment is included within the field of view of the sensor, and identifies augmented reality content associated with the target object. As the sensor continues capturing the image, the system directs a projector included within the augmented reality projection device to project the augmented reality content onto a physical surface within the real-world environment and associated with the target object. The physical surface is physically detached from the augmented reality projection device and is included within the field of view of the sensor while the augmented reality content is projected onto the physical surface.
A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appear in minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.
A method for implementing a graphics pipeline. The method includes generating a system of particles creating an effect in a virtual scene, the system of particles comprising a plurality of particle geometries. The method includes determining a subsystem of particles from the system of particles, the subsystem of particles comprising a subset of particle geometries taken from the plurality of particle geometries. The method includes determining a foveal region when rendering an image of the virtual scene, wherein the foveal region corresponds to where an attention of a user is directed. The method includes determining that at least one portion of the effect is located in the peripheral region for the image. The method includes rendering the subsystem of particles to generate the effect.
A system and method for image processing result visualization. The method includes receiving a job, wherein the job includes a panoramic image and image recognition information, and creating a visualization based on the job, wherein the visualization includes the panoramic image with the image recognition information layered over the panoramic image.
A method and system for providing a visualization of energy data. In one embodiment, the method comprises establishing an energy visualization scale for visually depicting energy data in terms of one or more color parameters, where the energy data pertains to a distributed generator (DG); and generating a display image, based on the energy visualization scale, that depicts a plurality of energy data values in a grid layout across two dimensions in time.
A tomography method for generating a computed tomography (CT) image, including generating a first tomography image based on first raw data corresponding to a received X-ray comprising acquired photons; determining second raw data by generating a second tomography image having an increased resolution in comparison with the first tomography image and performing forward projection on the second tomography image; determining third raw data based on a first parameter, the first raw data, and the second raw data; and generating a third tomography image based on the third raw data, wherein the determining of the third raw data may be based on information about a distribution of the acquired photons, the information being included in at least one from among the first raw data and the second raw data.
An action recognition system and method are provided. The system includes an image capture device configured to capture a video sequence formed from image frames and depicting a set of objects. The system includes a processor configured to detect the objects to form object detections. The processor is configured to track the object detections over the frames to form tracked detections. The processor is configured to generate for a current frame, responsive to conditions, sparse object proposals for a current location of an object based on: (i) the tracked detections of the object from an immediately previous frame; and (ii) detection proposals for the object derived from the current frame. The processor is configured to control a hardware device to perform a response action in response to an identification of an action type of an action performed by the object, the identification being based on the sparse object proposals.
A positional shift amount calculation apparatus that calculates a positional shift amount, which is a relative positional shift amount between a first image, based on a luminous flux that has passed through a first imaging optical system, and a second image. A calculation unit calculates a positional shift amount based on data within a predetermined area out of first image data representing first and second image data. A setting unit sets a relative size of the area to the first and second image data. The calculation unit calculates a first positional shift amount using the first and second image data in the area having a first size that is preset. The setting unit sets a second size of the area based on the size of the first positional shift amount and an optical characteristic of the first imaging optical system. The calculation unit then calculates a second positional shift amount.
A method for obtaining object geometry in which image frames of a scene (e.g., video frames from a user passing a smartphone camera over an object) are transformed into dense feature vectors, and feature vectors are processed to obtain geometry of an object in the scene. The object geometry is determined from the feature vectors. Feature vector transforms are leveraged in a signal processing method for object identification (e.g., using machine learning classification), digital watermark or bar code reading and image recognition.
A method of registering first and second cameras in a multi-camera imager comprising generating virtual fiducials at different locations relative to the multi camera imager and using coordinates of the virtual fiducials to determine a fundamental matrix for the cameras.
A method for making a segmentation in the sorted sequence of data (100), that comprises arranging a sequential stream of sorted input data (10), where the data are arranged in matrices (frames), in this case by way of a preferred example as a sequence of images for image analysis (20), and that delivers a sequential stream of sorted output data (30), where the sorted output data are arranged in sorted matrices.
Apparatus, methods, and computer-readable media are provided for simultaneous feature extraction and dictionary learning from heterogeneous tissue images, without the need of prior local labeling. A convolutional autoencoder is adapted and enhanced to jointly learn a feature extraction algorithm and a dictionary of representative atoms. While training the autoencoder an image patch is tiled in sub-patches and only the highest activation value per sub-patch is kept. Thus, only a subset of spatially constrained values per patch is used for reconstruction. The deconvolutional filters are the dictionary elements, and only a deconvolution layer is used for these elements. Embodiments described herein may be provided for use in models for representing local tissue heterogeneity for better disease progression understanding and thus treating, diagnosing, and/or predicting the occurrence (e.g., recurrence) of one or more medical conditions such as, for example, cancer or other types of disease.
A computer-implemented method for selecting aerial images for image processing to identify Energy Infrastructure (EI) features is provided. The method includes performing image processing on aerial images of a portion of global terrain captured at different times to determine differences in terrain content the captured images. Aerial images are selected for further image processing according to identified differences in terrain content. The selected images are imaged processed via an EI feature recognition type to identify EI features within the images.
Techniques and systems are described to support digital image processing through use of an image repository, e.g., a stock image database or other storage. In one example, a plurality of candidate digital images are obtained from an image repository based on a target digital image. A plurality of transformations are generated to be applied to the target digital image, each transformation based on a respective candidate digital image. Semantic information is employed as part of the transformations, e.g., blending, filtering, or alignment. A plurality of transformed target digital images are generated based at least in part through application of the plurality of transformations to the target image.
The present disclosure relates to an image processing apparatus and method and decoding apparatus. The image processing apparatus may comprises a receiver for receiving an image and an image processor for dividing the image into a plurality of regions, and performing filtering by iteratively applying at least one filter to each of the plurality of regions in the image, wherein the at least one filter comprises an asymmetric filter that uses an asymmetric filtering window having height and width in different size.
A method and system of calibrating multispectral images from a camera on an aerial vehicle, the method including: capturing multispectral images of an area at a plurality of intervals with a multispectral imaging camera; simultaneously or at an arbitrary time capturing sunlight radiance data for each of the captured images; correlating the images with the sunlight radiance data; and calibrating the multispectral images based on the sunlight radiance data to normalize the multispectral images to one or more previous images of the area.
An image processing device and an image processing method capable of satisfactorily performing a point image restoration process of a visible light image and a point image restoration process of a near-infrared light image are provided. A point image restoration process is performed on luminance data Y indicating a visible light image and IR data indicating a near-infrared light image using a first point image restoration filter based on a first point spread function with respect to visible light of an optical system and a second point image restoration filter based on a second point spread function with respect to near-infrared light of the optical system. An appropriate point image restoration process is performed on the IR data so that restoration strength (second gain β) in the point image restoration process for the IR data captured with radiation of near-infrared light is higher than restoration strength (first gain α) in the point image restoration process for the luminance data Y.
Systems and methods consistent with the present disclosure may be utilized to negate the distinction between a display device operating in video and command modes in that commands associated with either mode are prioritized and executed according to a command scheduler consistent with the present disclosure. A command scheduler consistent with the present disclosure includes a display driver stack and a scheduler coupled to the display driver stack. The scheduler is configured to receive commands from the driver stack. Further, the scheduler is configured to queue and schedule the commands to be executed during a boot environment and during runtime. A host controller may also be coupled to the scheduler and may receive at least one of the commands from the scheduler. In time, the host controller transfers the commands to a device for execution.
Systems and methods may provide for receiving a Reverse Polish Notation (RPN) program stream including a set of operands and a set of operations and populating a first register stack with one or more operands in the set of operands. Additionally, one or more registers in the register stack may be powered off based on a stack depth of the register stack. In one example, one or more arguments are read from the register stack and an execution is conducted of one or more operations on the arguments.
Provided is a transit management server, system and method for managing transit fares for a transportation system. The method includes selecting, in a transit management server, at least one fare module according to a transit fare policy, the at least one fare module corresponding to a prescribed category of fare and configured to determine a fare based on the prescribed category, setting, in the transit management server, at least one parameter in the selected fare module, and transmitting, from the transit management server to at least one terminal communicatively coupled to the transit management server, the set parameter to update a corresponding fare module in the at least one terminal according to the transit fare policy.
The present invention is to provide an automatic IP core generation system that can reduce the loads on both an IP core vendor and a user. The present invention provides an automatic IP core generation system that generates an IP core in accordance with parameter information input from a user. The automatic IP core generation system includes: a parameter acquisition unit that acquires the parameter information; a meta IP core information storage unit that stores a meta IP core model as a model for generating various IP cores; a component library information storage unit that stores a component to be used in the IP core and the meta IP core model; an IP core generation unit that generates a package containing the IP core in accordance with the parameter information; and a package output unit that outputs the package.
A computer system for interaction with user devices presenting a keyboardless data entry interface and third party data systems is configured to provide data for display on a user device of a selectable input graphical user interface, the graphical user interface including a series of user selectable inputs not requiring user keyboard-type information entry. The system is configured to obtain data from a user device and from third party computer systems. The system is further configured to determine an insurance quotation based on inputs via the graphical user interface not requiring user keyboard-type information entry and the data from one or more of the user device and third party computer systems.
The present disclosure involves systems and computer implemented methods for performing a failure analysis on a device monitored by at least one connected device, where in response to a determination of an impending failure, at least one corrective action is determined and suggested to the user of the monitored device. In one example, operations include monitoring operations of at least one monitored device using at least one connected device, determining a projected life span of the at least one monitored device based on the monitored operations, and, if the projected life span of the monitored device is less than a threshold amount, determining a corrective action to perform. A proposal can be generated for presentation based on the corrective action. The proposal may be based on the estimated cost of the determined corrective action and an analysis of an account.
A method includes displaying, by a display screen, a front view of a card. The front view includes a front plan view in which a front surface of the card appears to be parallel with a front surface of the screen. The card is portrayed on the screen as rotating oscillatorily while remaining less than 90 degrees from the front plan view.
An online system generates a virtual world including objects, representations of users, and locations for presentation to online system users. The virtual world includes a virtual store including a plurality of objects for presentation to a user. To generate the virtual store, the online system retrieves information associated with the user and selects objects for inclusion in the virtual store based on the retrieved information. For example, the online system selects objects in which the user has expressed an interest or objects in which other users connected to the user have expressed an interest. The information associated with the user may also be used to determine positions of the selected object relative to each other or relative to a position of the user in the virtual store. After selecting and positioning the objects, the online system communicates the virtual store to a client device for presentation to the user.
Systems and methods here include computer-implemented methods for determining ratings for software including displaying multiple content descriptors and options for user selection of both the frequency and intensity of the content in the software program by non-numerical selections. Some embodiments include receiving selections of user characterizations of frequency and intensity for each of the multiple content descriptors, and mapping the user characterization selections of each of the multiple content descriptors to find a rating level for each of the multiple content descriptors. Some embodiments include determining a highest rating level for the software program by comparing all of the rating levels of all of the multiple content descriptors, and distributing the software program to certain geographies based on the determined highest rating level for the software program.
A seemingly infinite and continuous stream of online content can be tracked by a movement tracker that can track an amount of movement of a stream of content. For example, such a movement tracker can track the amount of movement per session of a client-side application, such as per session of a web browser. In an example, the tracking of the movement can occur by tracking a measurable parameter of the stream that indicates the amount of movement, such as scroll distance. The movement tracker may also be configured to determine user interaction data according to the tracked amount of movement.
A client computing system inserts selected advertising into digital content. Ads may be inserted into content based on a dynamic advertising matching process that is securely implemented within a hardware-based root of trust. User profiles used in ad matching may be privacy protected and maintained with confidentiality protection in the client computing system and/or a service provider server, respectively. When a client computing system makes a request to the service provider server for content with specified ad slots, the request may be made with the client's EPID signature, which is inherently privacy protected. The hardware-based root of trust protects insertion of selected ads into the linear rendering flow of the content.
A system environment supporting one or more advertisers and one or more ad publishers provides a means of sharing user-targeted advertisement. One or more hashing modules in the system environment provide the advertisers and ad publishers a means of sharing this information without revealing a user's personally identifiable information (PII). If a lossy hash is chosen, then an advertiser can communicate targeted advertisements to an ad publisher without revealing any PII to the ad publisher that the ad publisher did not already know.
Associating social comments with individual assets used in a campaign is described. In one or more embodiments, a campaign that includes one or more assets (e.g., images or videos of products) is published to one or more social networks. Comments (e.g., user comments, user shares, or other textual feedback) to the campaign on the one or more social networks are collected and analyzed to attribute each comment to an individual asset of the campaign. Social metadata, such as a social mention count and a social sentiment score, is generated based on the comments to enhance metadata of the individual asset.
Methods and systems for managing content related to Sustainable Development Strategies (SDS) may include a processor for receiving content comprising standardized data. The standardized data may include monetary valuations. The processor may be configured to store the received content in a storage device, and communicate with a content publication module and the storage device to publish the SDS content. In an embodiment, the processor may be configured to allow for searching of the published content by criteria based on the standardized SDS content. In an embodiment, the publication of submitted contents may be limited to a first predetermined number. The publication limit may be increased from the first predetermined number to a second predetermined number when a first predetermined threshold is reached. To encourage new quality content, additional increase in the number of contents that may be published may be allowed if additional predetermined thresholds are met.
A wireless device is enabled to provide offers. The wireless device receives card data for a financial account card and stores the card data in a memory associated with the wireless device. Responsive to using the card data in a transaction at a first merchant location, the wireless device receives transaction line-item data from a computing system associated with the first merchant location. The wireless device determines merchant information for a second merchant location and determines an offer associated with the second merchant location based on the line-item data and the merchant information for the second merchant. The wireless device presents the offer when the wireless device is near the second merchant location.
A method and system for customizing a mobile application running on a mobile communication device of a user. In one implementation, the method includes providing the mobile application to the mobile communication device of the user, the mobile application having a generic platform; determining a special interest group (SIG) that is affiliated with the user; and customizing the generic platform of the mobile application based on information specific to the special interest group (SIG) that is affiliated with the user.
A computing apparatus configured to generate trigger records for a transaction handler to identify authorization requests that satisfy the conditions specified in the trigger records, identify communication preferences of the users associated with the identified authorization requests, and use the communication preferences to target real-time messages at the users in parallel with the transaction handler providing responses to the respective authorization requests.
A method for identifying and distributing offers includes: storing account profiles, each profile including data related to a transaction account including an account identifier and a plurality of transaction data entries, each including transaction data; receiving an offer request from a consumer entity, the request including a specific account identifier and geographic location; identifying a specific account profile that includes the specific account identifier; identifying offer parameters, the parameters being based on the geographic location and the transaction data included in the identified specific account profile; transmitting the offer parameters to a merchant entity; receiving offer data for a plurality of offers from the merchant entity based on the offer parameters; identifying a specific offer based on the offer data for the specific offer and the transaction data included in the specific account profile; and transmitting the offer data for the identified specific offer to the consumer entity.
A system and method for automated regulatory compliance checking for organizations is disclosed. The present subject matter discloses a method for generating queries to extract relevant data from an organization that with respect to the regulatory rules and subsequently performing automated compliance checking for the organization. In an embodiment, the system captures regulatory rules provided by a regulatory body for an organization and extracts logical specification of rules from the semantic model in DR-Prolog language. The system further extracts a conceptual data model from the semantic model and obtains mapping between the conceptual data model and plurality of physical database. The system generates queries and translated the queries on to physical database schema to extract relevant data from the organization. The extracted data is transformed into ground facts in DR-Prolog and compared with logical specification of rules to perform automated regulatory compliance checking.
Concepts and technologies are disclosed herein for obtaining ratings using a rating service. A server computer executing a rating service can detect arrival of a user device at a vendor location. The server computer also can detect an interaction with a product offered at the vendor location by the user device. The server computer can determine that a rating for the product is to be requested, and can request the rating from the user device.
Aspects of the invention relate to a smart card that leverages emerging technology hardware to enhance secure release of sensitive data associated with the smart card. The smart card may include an OLED display. The device may include one or more biometric sensors. Embodiments may include pairing a device with a portal used to access sensitive data. When accessing the portal, the user may be required to verify that the device is present before gaining access to the sensitive data.
A rules engine for applying rules from a reviewing network to data signals from an originating network is described. The rules engine includes a processor coupled to a memory device. The rules engine is coupled to the reviewing network, and is configured to receive a clearing data signal from the originating network. The clearing data signal includes clearing data for at least one transaction that has been processed by the originating network. The originating network and the reviewing network are payment networks. Additionally, the rules engine generates a clearing response data signal that includes clearing response data by comparing the clearing data to the set of predefined rules stored in the memory device. The clearing response data indicates that the reviewing network will not guarantee settlement of at least one transaction included in the clearing data. The rules engine transmits the clearing response data signal to the originating network.
The Point-to-Point Transaction Guidance Apparatuses, Methods and Systems (“SOCOACT”) transforms smart contract request, crypto currency deposit request, crypto collateral deposit request, crypto currency transfer request, crypto collateral transfer request inputs via SOCOACT components into transaction confirmation outputs. Also, SOCOACT transforms virtual wallet address inputs via SOCOACT (e.g., P2PTG) components into transaction confirmation outputs. In one embodiment, the P2PTG includes a point-to-point payment guidance apparatus, comprising, a memory and processor disposed in communication with the memory, and configured to issue a plurality of processing instructions from the component collection stored in the memory, to: obtain a target wallet identifier registration at a beacon. The SOCOACT then may register the target wallet identifier with the beacon and obtain a unique wallet identifier from a migrant wallet source associated with a user at the beacon. The SOCOACT may then obtain a target transaction request at the beacon from the migrant wallet source and commit the target transaction request for the amount specified in the target transaction request to a distributed block chain database configured to propagate the target transaction request across a distributed block chain database network for payment targeted to the target wallet identifier registered at the beacon.
Various embodiments herein each include at least one of systems, methods, data structures, and software for document image processing within a device such as a retail scanner. One such embodiment, in the form of a method, includes receiving a document image from an imaging device of a scanner and determining a type of the document represented in the document image. The document image may then be processed to obtain document metadata and the document image and metadata representative of the document metadata and document type are added to a data structure. This method may further include adding transaction-related metadata to the data structure. The data structure may then be stored on the scanner, transmitted via local communications link to a host device, transmitted via a network to a database for storage, or transmitted via a network to another system for one or both of processing and storage.
Systems and methods are disclosed for the deposit, withdrawal, and reuse of currency for transactions. According to disclosed embodiments, an intelligent teller machine (ITM) is configured to receive currency as payment for a transaction, to calculate and dispense any change due, and to request that the net value of the transaction (e.g., the revenue) be deposited into the financial account of the business. The currency received by the ITM is also available to make change for future purchase transactions.
Methods and apparatus for secure registration to enable transactions between a first user and a vendor that is facilitated by a payment server are disclosed. The method may comprise storing a form soliciting customer information including a plurality of fields, wherein at least one of the plurality of fields is associated with an attribute. The method including receiving a copy of the form including customer data in all of the plurality of fields and transmitting a first subset of the customer data based on the attribute associated with the first subset of the customer data. The method including receiving a token in response to the transmission of the first subset of customer data and transmitting the token and a second subset of the customer data, wherein the second subset is based on the attribute associated with the second subset of customer data.
Provided is a method and a web-site integration system to integrate payment mechanisms into a commercial website that offers online merchants a flexible, user-friendly and customizable wizard to integrate payment mechanisms into their online commercial websites without having to understand the detailed intricacies of an API or other computer code. The wizard steps the merchant through creating an account to obtain credentials and educates the merchant on the page flows of the payment mechanism that the merchant wishes to integrate. Then, the wizard generates code snippets and files to be downloaded by the merchant and to be easily inserted into key pages of the merchant's online commercial website. The merchant can then test the completely integrated code in a developer's sandbox or go live with the completely integrated code.
A mobile device and method for determining power tool attendance. The mobile device and method are able to generate a list of power tools that are missing based on being outside of communication range with the mobile device. For example, the mobile device includes a short-range transceiver, a memory, and a processor coupled to the memory and the short-range transceiver. The processor is configured to receive a list of a first plurality of power tools and receive, via a user interface, a selection to detect nearby tools. The processor is also configured to receive, via the short-range transceiver, identification signals from a second plurality of power tools and determine that a subset of the first plurality of power tools is missing based on the identification signals. The processor is further configured to generate an indication that the subset of the first plurality of power tools is missing.
A method for executing a plurality of business rules on a plurality of incomplete data is provided. The method may include receiving the plurality of business rules, an object model, and a plurality of ruleset parameters. The method may also include generating a dependency tree based on the received plurality of business rules, the received object model, and the received plurality of ruleset parameters. The method may further include generating a plurality of ruleset source code based on a dependency tree that allows for disabling at least one of the received plurality of business rules. The method may also include determining a plurality of data corresponding to the presented set of data elements needed for evaluating the corresponding business rule is unavailable. The method may further include disabling the corresponding business rule based on determining the plurality of data is unavailable.
Disclosed is an apparatus for executing on-line purchases. The apparatus includes three different servers, a ticket server, a doorman server, and a checkout server. The purchase tasks are spread among the servers, and timed, so that the on-line purchase can be handled without server overload and customers losing their place in line. The ticket server issues a purchase ticket to a customer. The purchase ticket includes a predetermined time after which the customer can present the ticket to purchase the purchase item. On or after the predetermined time, the customer presents the purchase ticket to the doorman server. The doorman server validates the ticket and checks that the predetermined time has passed. Once the doorman server approves the purchase ticket, the doorman server passes the purchase ticket to the checkout server with a purchase approval indicator. The checkout server then executes the on-line purchase of the purchase item.
Techniques are provided herein for utilizing a classification engine to improve a classification model. For example, a classification engine may derive a statistical model based at least in part on a synthetic data set. A misclassification may be determined based at least in part on an output of the statistical model. An audit question may be provided to an individual, the audit question being determined based at least in part on the determined misclassification. Response data related to the audit question may be received. The statistical model may be validated based at least in part on the response data.
In general, embodiments of the present invention provide systems, methods and computer readable media for curating a training data set to ensure that training data being updated continuously from a data reservoir of verified possible training examples remain an accurate, high-quality representation of the distribution of data that are being input to a predictive model for processing.
Embodiments of the present invention provide a method for detecting a temporal change of name associated with performance data. The method comprises receiving at least one candidate name replacement pair comprising a pair of names. The method further comprises, in a training stage, for each known name replacement pair included in the performance data, determining a window of time covering a most recent appearance of a first name of the known name replacement pair. The window of time is determined based on quantitative features of a time series model comprising performance data for the first name and a second name of the known name replacement pair. The method further comprises, in the training stage, training a machine learning classifier based on quantitative features computed using a portion of the performance data for the first name and the second name, where the portion is within the window of time determined.
A computerized method for creating a function model based on a non-parametric, data-based model, e.g., a Gaussian process model, includes: providing training data including measuring points having one or multiple input variables, the measuring points each being assigned an output value of an output variable; providing a basic function; modifying the training data with the aid of difference formation between the function values of the basic function and the output values at the measuring points of the training data; creating the data-based model based on the modified training data; and providing the function model as a function of the data-based model and the basic function.
Described are techniques that determine cumulative skew curves. A first model is determined that generates a predicted destination cumulative skew curve for a specified data set in a destination data storage system having a destination data movement granularity. The predicted destination cumulative skew curve is predicted by the first model in accordance with one or more inputs including a source cumulative skew curve for the specified data set in a source data storage system that uses a source data movement granularity. The source cumulative skew curve for the specified data set is determined based on observed data. First processing is performed using the first model. The first model generates as an output the predicted destination cumulative skew curve. The first processing includes providing the one or more inputs to the first model. Also described is how to generate the first model.
Systems and methods of automated ontology development include a corpus of communication data. The corpus of communication data includes communication data from a plurality of interactions and is processed. A plurality of terms are extracted from the corpus. Each term of the plurality is a plurality of words that identify a single concept within the corpus. An ontology is automatedly generated from the extracted terms.
A method includes receiving a first set of testing data associated with a first group of electronic devices. The first set of testing data is generated during a tuning test applying a first range of testing parameters. The method further includes receiving a second set of testing data associated with the first group of electronic devices. Further, the method includes determining, based on the first set of testing data and the second set of testing data, a second range of testing parameters that is less than the first range of testing parameters. The method includes testing a second group of electronic devices using a tuning test applying the second range of testing parameters.
A radiofrequency transponder includes a radiating antenna and an electronic device. The radiating antenna is a single-strand helical spring forming a dipole antenna. The electronic device includes an electronic chip and a primary antenna, which are encapsulated at least partially in a rigid, electrically insulating mass. The primary antenna is electromagnetically coupled to the radiating antenna.
The disclosure provides a method for forming a core layer for at least one information carrying card, and resulting products. The method includes forming an inlay layout, and dispensing a crosslinkable polymer composition over the inlay layout and contacting the inlay layer so as to form the core layer of the information carrying card. The inlay layout includes at least one inlay layer coupled with a first thermoplastic layer. The first thermoplastic layer comprises a thermoplastic material, and defines at least one hole therein. The at least one inlay layer is disposed at least partially inside a respective hole.
A principal-subordinate relationship between two subjects is decided with regard to multiple subjects included in an image. Similarly, with regard also to other images, a principal-subordinate relationship between two subjects is decided with regard to multiple subjects included in each image. In a case where a relationship exists in which a first subject is a subordinate subject and a second subject is principal subject, the system calculates a principal-subordinate relationship value that is higher than in a case where a relationship in which a first subject is a subordinate subject and a second subject is principal subject does not exist. The greater the number of subjects to which the first subject is subordinate from among the multiple subjects, the lower the principal-subordinate relationship value calculated. On the basis of the calculated principal-subordinate relationship values, a subject evaluation value is calculated for every subject.
The disclosed computer-implemented method for generating training documents used by classification algorithms may include (i) identifying a set of training documents used by a classification system to classify documents written in a first language, (ii) generating a list of tokens from within the training documents that indicate critical terms representative of classes defined by the classification system, (iii) translating the list of tokens from the first language to a second language, (iv) creating, based on the translated tokens, a set of simulated training documents that enables the classification system to classify documents written in the second language, and (v) classifying an additional document written in the second language based on the set of simulated training documents. Various other methods, systems, and computer-readable media are also disclosed.
Described herein are systems and methods for multimodal recurrent network processing. In an embodiment, a system for evaluating multimodal data comprising a multimodal data input and a multimodal processing module is described. The multimodal data input may comprise the multimodal data, the multimodal data may comprise a first modality and a second modality. The multimodal processing module may be configured to receive the multimodal data comprising the first modality and the second modality; evaluate the first modality using a first recursive neural network comprising a first transformation matrix; evaluate the second modality using a second recursive neural network comprising the first transformation matrix; and determine an output based, at least in part, on evaluating the first modality and the second modality.
An image recognition device includes: a camera unit that generates a distance signal and a luminance signal using reflected light from a plurality of subjects; an image generator that generates a range image from the distance signal and generates a luminance image from the luminance signal; and an image recognition processor that performs image recognition. The image recognition processor divides each of the range image and the luminance image into a plurality of regions, makes a determination, for each of the plurality of regions, as to whether the regions is a first region in which a specific object is clearly not present or a second region other than the first region, and performs image recognition processing on, among the plurality of regions, one or more regions other than the first region.
Systems and methods for finding and presenting differences between documents are provided. One method includes identifying one or more differences between a first document and at least one second document. The method further includes determining each of the one or more differences to be either a significant difference or an insignificant difference. The method further includes providing a first identification of the significant differences and a second identification of the insignificant differences.
Provided herein are systems, methods and computer readable media for classification of documents using a location hierarchy. An example method may include receiving a feature vector r that represents occurrence counts of references in a document's text to each of a group of named entities, and determining whether the document is associated with the particular location by querying, to determine a query result, using feature vector r, at least one location-specific classifier from a group of location-specific classifiers, wherein the location-specific classifier is associated with the particular location, and wherein the location-specific classifier is configured to generate a positive output value in response to receiving an input feature vector representing occurrence count of at least one reference to the particular named entity and determining that the document is associated with the particular location in an instance in which the query result includes data indicating that the positive output value was generated by the location-specific classifier that is associated with the particular location.
One or more images including a user's face are captured, and at least one of these images is displayed to the user. These image(s) are used by a face-recognition algorithm to identify or recognize the face in the image(s). The face-recognition algorithm recognizes various features of the face and displays an indication of at least one of those features while performing the face-recognition algorithm. These indications of features can be, for example, dots displayed on the captured image. Additionally, an indication of progress of the face-recognition algorithm is displayed near the user's face. This indication of progress of the face-recognition algorithm can be, for example, a square or other geometric shape in which at least a portion of the user's face is located.
A method of rejecting the presence of an object of extrusion within a point cloud. The method comprising receiving, through a data interface, data describing a set of measurements of observed portions of the one or more objects in the scene. The method further comprising receiving data describing an extruded object that is hypothesized to exist in the scene. The method further comprising finding a set of near measurement points comprising measurement points wherein each measurement point is within a predefined distance of the hypothesized extruded object. The method further comprising classifying points within the set of near measurement points associated with the hypothesized extruded object as on-surface or off-surface. The method further comprising rejecting the hypothesized extruded object whose off-surface measurement points exceed an allowable threshold.
Provided are apparatuses and methods using an optical speckle. An apparatus may include a light source configured to emit coherent light to an object and an imaging device configured to photograph a speckle pattern generated on the object by the coherent light. The apparatus may also include a processor having a function of determining whether the object is a living body or a non-living body by measuring a contrast of the speckle pattern. The processor may be configured to determine whether the object is a living body or not by comparing the contrast of the speckle pattern with a threshold contrast or a reference contrast previously registered by a user. The apparatus may be used by being applied to a fingerprint recognition system.
A method for controlling unlocking is provided. The method includes the following operations. Determine whether a finger of a user is in a steady state when a touch operation of the finger on a fingerprint recognition sensor of a terminal is detected. A first fingerprint image according to capacity auto control (CAC) parameters corresponding to a wet finger is received when the finger of the user is in the steady state. N second fingerprint images corresponding to N sets of CAC parameters are received during the receiving of the first fingerprint image. A target fingerprint image is determined and a fingerprint comparison is performed on the target fingerprint image. Unlock the terminal when detecting that the result of the fingerprint comparison is a match.
Disclosed are a wearable device and controlling method thereof. The present invention includes a flexible surface light source, a photo panel located on a top surface of the flexible surface light source, and a controller coupled with the flexible surface light source and the photo panel. The controller is configured to detect a first biometric image by controlling the flexible surface light source and identify a user by comparing the detected first biometric image to a second biometric image previously saved in a memory.
An object bearing a three-dimensional rotatably-readable encoding of data configured for optical rotational machine-reading, the object being a subject of the data, the encoding of data including a multiplicity of three-dimensional shapes formed on a label adhered to a surface of the object, the surface being arranged for rotation in a plane coinciding with the surface, the multiplicity of three-dimensional shapes being formed to reflect light impinging thereupon while the surface is rotated, characteristics of the reflected light representing data encoded within the multiplicity of three-dimensional shapes.
Systems and methods for decoding and using data on cards are disclosed. According to one disclosed embodiment, a system for decoding and using data on cards includes: a network interface; a scanner configured to scan a passive data source on the identification card and transmit a scanner signal associated with the passive data source; a processor coupled to the scanner and the network interface, the processor configured to: receive the scanner signal; process the scanner signal and determine data stored in the passive data source.
A reading device including an identification information reading device which reads the identification information, a holding device which holds an identification information application member, a moving device which moves the holding device relative to the identification information reading device, and a control device which controls operations of the identification information reading device, the holding device, and the moving device. The control device causes the holding device to move using the moving device such that at least a portion of the holding region in which the holding device holds the identification information application member is a reading region to move the identification information application member and is configured to perform a first reading process which carries out a reading process of the identification information using the identification information in a state in which holding of the identification information application member using the holding device is released.
Systems and methods for a reconfigurable antenna are provided. One system includes a device having a plurality of antenna elements configured to read a radio-frequency identification (RFID) tag and a switch having an input configured to receive a control signal from an RFID reader via a communication line to select one antenna of the plurality of antenna elements. The device further include a controller configured to control a state of the switch, wherein the switch is configured to be switched between states when the controller receives the RFID control signal comprising an address unique to the switch, thereby allowing the RFID reader to send an interrogation signal to and receive a response from the RFID tag in response to receiving the RFID control signal.
A system for marking objects using an electromagnetic marking device includes a first electromagnetic marking device, including a body having a top surface and a bottom surface. The body includes a first part having a through-hole in the first part, the through-hole having a first opening in the top surface of the body and a second opening in the bottom surface of the body, and a first member disposed within the through-hole, the first member including a first proximal end attached to the body and a first distal end not attached to the body. The body includes a second part attached to the first part. The electromagnetic marking device includes a signal generator attached to the second part, the signal generator further including a wave generator circuit and a wave modulator circuit.
A data-masking tool encoded on one or more computing readable storage media that includes a code that uses a combination of fields that uniquely identifies data in a record and utilizing it as a reference to mask original data with substitute values, by either aggregating several into one, mapping one-to-one or expanding one into a set.