US08830593B2
A zoom lens includes: a first lens group having a negative refractive power; and a second lens group having a positive refractive power, provided in this order from an object side. Magnification is changed by moving the first lens group and the second lens group. The first lens group includes a first lens having a negative refractive power, a second lens having a positive refractive power, a third lens having a negative refractive power, and a fourth lens having a positive refractive power, provided in this order from the object side. The zoom lens satisfies the following conditional formulae, when fw is the focal length of the entire system at the wide angle end, f1 is the focal length of the first lens group, and f2 is the focal length of the second lens group: 0.00
US08830591B2
A projection lens for projecting image information displayed on a reduction side conjugate position to a magnification side conjugate position, including a negative first lens group, a positive second lens group, a positive third lens group, and a positive fourth lens group arranged in this order from the magnification side, which satisfies predetermined conditional expressions.
US08830589B2
Techniques are disclosed for creating optical systems and devices that enable a mobile device (e.g., smartphone or other mobile phone, personal media player, and/or other personal electronic device) to be coupled with an optical device (e.g., a riflescope, spotting scope, etc.) such that information shown on the display of the mobile device is viewable to a user looking into the eyepiece of the optical device. Additionally or alternatively, an image from the optical device can be communicated to the mobile device. A modular design can utilize an apparatus configured to encase a mobile device, which can be coupled with the optical device via and optical and/or electrical interface.
US08830583B2
A position controller for a removable optical element in an optical system includes an advancing/retracting ring; a removable optical element holding member supported by the advancing/retracting ring and rotatable about a first rotational axis between an insertion position on the optical axis and a removed position; an insertion holder which holds the removable optical element holding member at the insertion position; a removal drive member supported by the advancing/retracting ring and rotatable about a second rotational axis between an insertion allowance position and a forced removing position; and an insertion/removal controller. A rotational radius from the second rotational axis to a contact point between the removable optical element holding member and the removal drive member is greater than a rotational radius from the first rotational axis to the contact point.
US08830580B2
Imaging optics having reduced susceptibility to thermally-induced stress birefringence for imaging an object plane to an image plane; comprising an aperture stop positioned between the object plane and the image plane; a first group of optical elements located on the object plane side of the aperture stop; and a second group of optical elements located on the image plane side of the aperture stop. The optical elements in the first and second groups that are immediately adjacent to the aperture stop are refractive lens elements fabricated using optical materials having a negligible susceptibility to thermal stress birefringence, and the other optical elements are a combination of reflective optical elements and refractive lens elements fabricated using optical materials having at most a moderate susceptibility to thermal stress birefringence.
US08830578B2
An optical isolator 1 element comprises a Faraday rotator 11 that rotates a polarization plane of light; a first polarizer of optical absorption type 12 arranged on one surface side of the Faraday rotator 11, the first polarizer 12 having a layer in which metal particles are distributed; and a second polarizer of optical absorption type 13 arranged on another surface side of the Faraday rotator 11, the second polarizer 13 having a metal particle layer in which metal particles are distributed in a density higher than the density of metal particles distributed in the metal particle layer of the first polarizer 12. The optical isolator 1 makes it possible to reduce a deterioration of isolation caused by occurring a reflected light reflected between the second polarizer 13 and the first polarizer 12.
US08830571B1
An all-reflective afocal lens is comprised of eight-reflective mirrors which can fold the light path into a very compact and thin configuration while maintaining diffraction limited performance. Such an afocal arrangement is usable with a traditional optical imager of an appropriate aperture dimension and FOV range, or with an annular aperture optical system with the appropriately scaled aperture and acceptable FOV angles. When combined the resulting FOV is scaled by the magnification produced by the afocal. The afocal arrangement can be used in either a magnification mode or a demagnification mode. Such an afocal arrangement can be used as either a focal length extender or as a FOV switch enabling a very short length two FOV multi-spectral system with a length that can be an order of magnitude shorter than a known optical system.
US08830562B2
A multi-color electrophoretic display (EPD) device, an image sheet, and a method of manufacturing the same. The method of manufacturing the multi-color EPD device includes: forming capsules including photosensitive color-developing capsule shells each of which stores a dielectric fluid and at least one type of electrophoretic particles dispersed in the dielectric fluid; disposing the capsules in a unit color pixel area on a substrate; exposing the capsules to light to form a latent image of a color pattern image on the capsules; and developing the photosensitive color-developing capsule shells of the capsules to form unit color pixels including color capsules.
US08830554B2
The present subject matter can include a two-dimensional electrochemical writing assembly and uses thereof. The writing assembly can enable for time-dependently displaying of a physical parameter, such as a time-dependent display or recording of the temperature. The writing assembly comprises two different types of electrochemical processors, of which one type is used for controlling the time-dependent switching of the second type of electrochemical processors used in the writing assembly.
US08830547B2
An authentication hologram uses a Lippmann hologram that enables a 3D object image having a vertical and horizontal field of vision as well as planar with added information viewable at a specific angle alone. In that authentication hologram, a hologram for reconstructing a 3D object image and a hologram mirror pattern that is formed at a pattern portion corresponding to the added information and has planar interference fringes placed one upon another and parallel at a constant spacing are recorded in a superposing fashion.
US08830544B2
An image reading apparatus includes an image reader unit that has a plurality of light receiving elements for reading an image on an original, and moves relative to a frame for applying a pressing force to a read-target surface of the original; and a driven roller that is rotatable, comes into contact with the original, and moves relative to the frame and independent of the image reader unit in a direction in which the image reader unit applies the pressing force to the original, thereby applying a pressing force to the original independent of the image reader unit.
US08830542B2
An illumination apparatus for use in an image reading apparatus that forms a reduction image of a read area of an original on an image pickup element by an imaging optical system, includes: a light source illuminating the original; and a light guide guiding light to the original; wherein the light guide has a first surface on which light is incident or that diffuses light, a second surface from which light exits toward the read area, and a third and fourth surfaces arranged between the first and second surfaces in a sub-scanning section perpendicular to a longitudinal direction of the light guide, the third surface arranged on a side closer to an optical axis of the imaging optical system, and the fourth surface arranged on a side farther from the optical axis, wherein the third and fourth surfaces are reflective surfaces having the same paraxial power which is appropriately set.
US08830540B2
The present disclosure relates to an image reading device, including: a light emitting portion; a light guiding member; a holding member that holds the light emitting portion and the light guiding member; and a case member that holds the holding member. In the image reading device, the light guiding member is shaped like a stick, of which end portion is disposed to face the light emitting portion. The holding member holds the light emitting portion and the light guiding member. In addition, the holding member has: and a holding portion that disposes the light guiding member along a main scanning direction, and positions and holds an end portion on the light emitting portion side in the main scanning direction. The case member holds the holding member.
US08830537B2
A data communication apparatus is disclosed. In the data communication apparatus, when plural documents including destination information are transmitted to an external apparatus by using a facsimile function, reference destination information in image data of a reference document is compared with destination information in image data of documents other than the reference document. When the destination information in the image data of the documents other than the reference document is the same as the reference destination information in the image data of the reference document, the image data of the plural documents are transmitted to the external apparatus.
US08830532B2
A printing control method of a printer is implemented in a printing system including an information providing device and a printer. The printer is connected to the information providing device for printing data sent by the information providing device. Once a printing driver program of the information providing device receives page data to be outputted, the printing driver program converts a number of first color components of the page data into a number of second color components and checks if any one of the second color components contains zeroes for all the content. If one second color component is found to have zeroes for all the content, this very second color component will not be sent to the printer, whereas the rest of the second color components will be sent to the printer for output.
US08830531B2
A printing system is disclosed. The printing system includes an image processor to selectively rasterize a plurality of objects, and to determine if a size of a first object is less than or equal to a predetermined threshold perform a single-cell halftone process on the first object if the size of the first object is less than or equal to the predetermined threshold and perform a super-cell halftone process on the first object if the size of the first object is greater than the predetermined threshold.
US08830528B2
The blocking unit generates first block property data having a first value if all pixels in the block image do not have a color of the color plane, and generates first block property data having a second value if at least one pixel in the block image has the color. The gamma correction unit performs gamma correction for the block image having the second value and does not perform gamma correction for the block image having the first value. The screen process unit generates a block dot image by performing a screen process for the block image after the gamma correction. The toner adhesion amount calculating unit identifies values of the first block property data of block images adjacent to an objective block image, and identifies the toner adhesion amount of the object block as a value changed correspondingly to the identified values of the first block property data.
US08830524B2
Banding can be prevented and image-quality degradation can be reduced. An image processing apparatus includes first creation means configured to distribute density of image data to a pixel on another scanning line on the basis of a difference between an actual print position of the image data and a reference position and to create position-corrected image data, second creation means configured to correct the image data using a correction value corresponding to a position of the image data and to create density-corrected image data, and generation means configured to generate output image data using the position-corrected image data created by the first creation means and the density-corrected image data created by the second creation means.
US08830521B2
An image forming apparatus includes the following elements. An image forming unit forms an image by using plural predetermined colors. An index forming unit causes the image forming unit to form two or more consecutive image correcting indexes of one type by using an identical color, the image correcting indexes being used for correcting misregistration of an image to be formed. The image correcting indexes are sequentially transferred to an image carrier. A detector includes a light source emitting light to the image correcting indexes and a light receiver receiving light reflected by the image carrier and the image correcting indexes to generate a detection signal. A position specifying unit specifies a position between two consecutive image correcting indexes by using the detection signal. A misregistration correcting unit corrects misregistration of an image to be formed by using the specified position.
US08830520B2
A computer-implemented method and system for enhancing black density of a halftoned bitmap are provided. The method includes receiving a halftoned bitmap into computer memory, and, using a computer, identifying at least one black-only pixel in the halftoned bitmap. The method further includes for each of the identified black-only pixels, identifying at least one black-only pixel as a candidate for adding color based at least in part on the location of the black-only pixel with respect to an edge in the halftoned bitmap, modifying the halftoned bitmap by adding color to at least one of the candidate black-only pixels, and outputting the modified halftoned bitmap.
US08830511B2
According to one embodiment, an environmental contribution supporting apparatus provided for a system including a printing apparatus and an erasing apparatus includes a duplex-reduction calculating unit, an aggregation-reduction calculating unit, a sheet-reduction-ratio calculating unit, a printing-state-character selecting unit, a sheet-reuse-ratio calculating unit, a reuse-state-character selecting unit, a sheet-reduction-message selecting unit, a sheet-reuse-message selecting unit, an advice setting unit, and a report creating unit configured to edit a character selected by the printing-state-character selecting unit, a character selected by the reuse-state-character selecting unit, and a message set by the advice setting unit into a predetermined form.
US08830506B2
An image processing system includes intermediate-data generating apparatuses and one or more drawing-data generating apparatuses. The intermediate-data generating apparatuses interpret data of pages forming PDL document data, the pages being assigned to the corresponding intermediate-data generating apparatuses, to generate elements of intermediate data of the pages. The drawing-data generating apparatuses each obtain assigned elements of the intermediate data and each draw the obtained elements to generate drawing data including information concerning pixels forming each obtained element. The drawing-data generating apparatuses each include a memory that stores intermediate data or drawing data of a common element used in the obtained elements. If the intermediate data or the drawing data of the common element is stored in the memory, the drawing-data generating apparatuses generate drawing data of the obtained elements using the stored intermediate data or drawing data. The number of drawing-data generating apparatuses is smaller than that of intermediate-data generating apparatuses.
US08830498B2
An information processing apparatus (printing server) of one aspect of the present invention generates print data from a print target file attached to the electronic mail received from a mobile terminal via a network, and causes a printer designated in the electronic mail to execute printing based on the print data. In a case where a printer notifies a printing server of the occurrence of an error during the execution of printing based on print data, the printing server instructs the printer to automatically skip an error which has occurred, if it is designated in received electronic mail that the error should be automatically skipped.
US08830495B2
An image forming apparatus comprises a display unit; and a display controlling unit that causes the display unit to display a first ready screen and a second ready screen. The first ready screen is displayed when a job can be accepted, and the first ready screen indicates that a job can be accepted and has a first button for detecting operator's input of a request for displaying a screen having first information. The second ready screen is displayed when a job can be accepted after input of the request is detected, and the second ready screen has the first information and has a second button for detecting input of a request for displaying second information other than the first information.
US08830490B2
Methods and systems feed print media from a print media storage device to a scanner positioned along a paper path, and feed the print media along the paper path from the scanner to a marking device positioned along the paper path. The scanner is positioned between the print media storage device and the marking device along the media path. The scanner scans the print media as the print media travels along the paper path before the print media reaches the marking device. The methods and systems control actions of the marking device based upon patterns of markings detected on the print media by the scanner using a processor operatively connected to the scanner and the marking engine, and print markings on the print media using the marking device.
US08830489B2
The invention describes a laser plotter and a method for engraving, marking or inscribing a workpiece. Two lasers are installed in a housing of the laser plotter and may alternatively operate on the workpiece. The workpiece is positioned on a processing platform and a laser beam is sent to at least one focusing unit configured for both lasers, from which the laser beam is deflected in the direction of the workpiece. Control of the workpiece is obtained by software running in a control unit. Graphic and/or text data are prepared on an external computer or other control device, and transferred to the control unit of the laser plotter. The lasers are allocated to the transferred data based on color code, whereby a height correction value to compensate for the various focal lengths of the lasers is preloaded in the data bank for the different colors.
US08830468B2
A colorimeter or other instrument measures the color composition and texture of a person's skin and an individual custom formulation is produced. A computer system accepts data from a colorimeter 300 or like instrument and uses a main executable program 502 and a subroutine 504 for color analysis to derive an average color that is used to select a closest matching color from a database of approximately 20,000 interpolated colors, the interpolated colors sometimes derived from a database of approximately 2,000 human skin colors. The closest match may also be found within a database comprising approximately 2,000 human skin colors and 20,000 interpolated human skin colors. The disclosed machines and methods then custom formulate such color to produce foundation, concealer, tinted moisturizer, skin care products, nail polish, hair dye, lipstick, lip gloss, blush, mascara, eyeliner eye shadow and other products.
US08830467B2
A spectrophotometer 300, webcam 302 or other instrument measures the color composition and texture of a person's face 400 or other body part. A computer system 301 includes a processor 501 and a non-transitory, non-signal computer readable medium 500 containing machine readable instructions that accept data from a spectrophotometer 300 or like instrument and uses a main executable program 502 and a subroutine 504 for color analysis to derive a mix of color to create a cosmetic product matching or enhancing the color composition and/or texture of the person's face or other body part. Customer skin color may be custom matched on the fly and specifically formulated and created. Or, a database of approximately 22,000 human skin colors may be drawn upon to find a best match for a customer's skin color. A color from the database may then be custom formulated and dispensed.
US08830466B2
An arrangement for providing passive alignment of optical components on a common substrate uses a set of reference cavities, where each optical device is positioned within a separate reference cavity. The reference cavities are formed to have a predetermined depth, with perimeters slightly larger than the footprint of their associated optical components. The reference cavity includes at least one right-angle corner that is used as a registration corner against which a right-angle corner of an associated optical component is positioned. The placement of each optical component in its own reference cavity allows for passive optical alignment to be achieved by placing each component against its predefined registration corner.
US08830461B2
An inspection apparatus for a display substrate includes a reflection plate, a liquid crystal layer, an electrode layer, a ¼ wavelength retardation plate and a polarization plate. The liquid crystal layer is disposed on the reflection plate and includes liquid crystal molecules which have a retardation value of about 140 nanometers to about 200 nanometers and are operated in a twisted nematic mode. The electrode layer is disposed on the liquid crystal layer and generates an electric field in cooperation with an electrode of the display substrate. The ¼ wavelength retardation plate is disposed on the electrode layer and the polarization plate is disposed on the ¼ wavelength retardation plate.
US08830455B2
In an aspect, an inspection method for detecting the presence or absence of a defect on an object, the object comprising a recess having a physical depth, is disclosed. The method includes directing radiation at the object, the radiation having a wavelength that is substantially equal to twice an optical depth of the recess, detecting radiation that is re-directed by the object or a defect on the object, and determining the presence or absence of a defect from the re-directed radiation.
US08830452B2
A geodetic target 1 for use in geodesy comprises an orienting device 10 with a bearing direction P, a first inclinometer 20 with a first axis of inclination 20A, a reflector 30 reflecting incident measurement beams S, an imaging optics 40 that focuses the incident measurement beams S, a matrix sensor 50, whose receiving surface 51 is situated in an image plane of the imaging optics 40, and an interface 60, which is connected to the first inclinometer 20 and the matrix sensor 50. The spatial arrangement and orientation of the optical axis and/or axis of symmetry 30A of the reflector 30 relative to the bearing direction P of the orienting device 10 is predetermined here. The first axis of inclination 20A makes an angle α other than zero with an optical axis 40A of the imaging optics 40. The optical axis 40A of the imaging optics 40 coincides with an optical axis 30A and/or axis of symmetry of the reflector 30 or is parallel to it or make an angle with it. The interface 60 is designed to put out the signals received from the first inclinometer 20 and the matrix sensor 50 for determining a spatial orientation of the reflector 30 reflecting the measurement beams relative to the target point Z.Moreover, a position determining system comprising this target and a method which uses this target is disclosed.
US08830444B2
A lithographic apparatus comprising a source that generates a beam of radiation, a support structure supporting a patterning device, a substrate table for holding a substrate, and a projection system projecting the patterned radiation beam onto a target portion of the substrate. The lithographic apparatus further comprises a vibration measurement apparatus configured to measure relative vibration between the patterning device and the substrate during exposure of the target portion. A control apparatus adjusts power of the radiation beam to compensate for the effect of the measured relative vibration on the pattern projected onto the substrate.
US08830443B2
A lithographic projection apparatus that is arranged to project a pattern from a patterning device onto a substrate using a projection system has a liquid supply system arranged to supply a liquid to a space between the projection system and the substrate. The apparatus also includes a liquid collecting system that includes a liquid collection member having a permeable member through which a liquid is collected from a surface of an object opposite to the liquid collection member, wherein the permeable member has a plurality of passages that generate a capillary force.
US08830438B2
The present invention relates to a liquid crystal display (LCD) panel and its manufacturing method. The LCD panel comprises a first substrate, a second substrate, a sealant, and a barrier wall. The first substrate and the second substrate are disposed relatively. The sealant disposed surrounding between the first substrate and the second substrate. The barrier wall is disposed at the outer side of the area surrounded by the sealant, and the barrier wall is respectively abutted against the first substrate and the second substrate. In summary, the present invention could improve the overflow of the sealant, reducing the difficulty for narrow frame design and the requirement for cutting precision of the LCD panel.
US08830423B2
A method of making a liquid crystal device is provided, the method comprising (i) providing a cell containing a mixture of a liquid crystal and pre-polymer (ii) applying a stimulus to arrange the liquid crystal in a first predetermined state and (iii) subsequent to, or contemporaneously with, step (ii), causing the pre-polymer to form polymer when the liquid crystal is in a second predetermined state, wherein steps (ii) and (iii) are performed a plurality of times.
US08830419B2
The present invention provides a backlight module, which comprises a waveguide has an incident surface and light-emitting surface. A light source is arranged on a side of the incident surface. An optical module is arranged above the waveguide and facing the light-emitting surface. The optical module includes a least one optical film having a crease at one side thereof. At least a positioning arrangement is arranged on a side surface of the waveguide other than the incident surface. A space is defined between the positioning arrangement and the side surface of the waveguide. The crease of the optical film is received within the space. The present invention further provides a liquid crystal display module incorporated with a backlight module disclosed. Accordingly, when the optical films is experiencing an expansion or contraction resulted from temperature gradient, the robust can always make the optical films properly seated within the receiving space defined by the positioning arrangement and the waveguide. As a result, the optical films can be effectively prevented from being deformed or creating a wave-form deformation.
US08830408B2
Aspects of the present invention provide an electro-active lens and method for manufacturing the same that encapsulates liquid crystal using solid transparent optical material using an improved liquid crystal seal feature. The seal feature greatly reduces the visibility of the liquid crystal seal feature in an assembled electro-active lens. The seal feature is also structurally robust such that the electro-active lens can be processed to fit a spectacle frame without disturbing containment of the liquid crystal and without disrupting electrical connectivity to the lens used to alter the refractive index of the liquid crystal, thereby ensuring fabrication of a commercially viable electro-active lens.
US08830389B2
An image detecting module includes a socket, a circuit board, an image sensor, an elastic element, a filter and a holder. The socket comprises an inner circumference wall along a main axis for defining an inner space and a platform that extended from the inner circumference wall. Pluralities of mounting holes are provided on the holder and pluralities of protrusions are provided on the socket; thus the elastic element and the filter could be fixed between the platform and the holder by fitting the protrusions into the mounting holes.
US08830379B2
The image pickup apparatus of the present invention includes: an optical imaging system for forming an object image; an image pickup device including a plurality of pixels that photoelectrically converts the object image; a defocus quantity calculation section for calculating a defocus quantity based on a phase difference between a plurality of signals for focus detection obtained from a plurality of pixels for focus detection that respectively receive a light flux that passes through a different pupil region of the optical imaging system; a focusing section for driving the optical imaging system so as to achieve an in-focus state, in accordance with the defocus quantity calculated at the defocus quantity calculation section; an addition practicability determination section for determining a practicability of performing inter-frame addition on a plurality of signals for focus detection before calculating the defocus quantity, based on an analysis result of a signal component of the object image; and an inter-frame addition processing section for performing inter-frame addition based on a determination result of the addition practicability determination section.
US08830372B2
A CCD image sensor includes vertical CCD shift registers and gate electrodes disposed over the vertical CCD shift registers. The gate electrodes are divided into distinct groups of gate electrodes. The CCD image sensor is adapted to operate in an accumulation mode and a charge transfer mode, an accumulation mode and a charge shifting mode, or an accumulation mode, a charge transfer mode, and a charge shifting mode. The charge transfer mode has an initial charge transfer phase and a final charge transfer phase. The charge shifting mode has an initial charge shifting phase and a final charge shifting phase.
US08830368B2
In a solid-state imaging device, an amplification transistor amplifies a signal generated by a photoelectric conversion unit and outputs the amplified signal. An analog memory accumulates the amplified signal output from the amplification transistor. A select transistor electrically connects the analog memory to a vertical signal line and selects any one of a first state in which the amplified signal accumulated in the analog memory is output to the vertical signal line and a second state in which the analog memory is electrically disconnected from the vertical signal line. A differential amplification circuit includes a first input terminal connected to a reference voltage and a second input terminal connected to the vertical signal line.
US08830348B2
An imaging device is configured to include an optical system which captures an image of a subject, an image sensor which converts the image captured by the optical system into an electric signal, a classifying unit which classifies the captured image into a plurality of areas according to brightness information and color information, a white balance correcting unit which set different white balance correction coefficients for the plurality of areas; and a white balance correction coefficient adjusting unit which adjusts a difference in the white balance correction coefficients for the plurality of areas to be within a first predetermined range.
US08830339B2
This disclosure describes techniques for triggering recording of digital video in a fast frame rate mode. In one example, a digital video recording apparatus includes a video sensor that captures digital video data at a fast frame rate in a fast frame rate mode, a video buffer that buffers the captured digital video data according to a first-in-first-out storage schema, a video storage that stores digital video data, and a motion detection unit that detects fast motion in the buffered digital video data, that stores digital video data from the video sensor in the video storage after detecting the fast motion, and that copies the contents of the video buffer to the video storage prepended to the stored video data. The digital video recording apparatus may be incorporated in a wireless communication device, such as a cellular phone.
US08830338B2
In an imaging device with a wide dynamic range function by combining images, focus is controlled to establish an in-focus state for each image to enlarge the dynamic range with reducing blur, thereby improving visibility. The device includes an imaging unit with a variable focal distance focus lens, an exposure controller for controlling the imaging unit's exposure to implement several shooting operations for a subject with different sensitivity, a processing unit for processing a signal outputted from the imaging unit to generate an image signal and a focus evaluation value indicating focus degree, an image combining unit for combining signals generated by the processing unit and outputting the combined signal, the processing unit generates a focus evaluation value for each outputted signal and the focus controller controls the focus lens for shooting operations of the imaging unit with mutually different sensitivity values, based on focus evaluation values respectively associated therewith.
US08830327B2
A video surveillance system includes at least one of a camera or a streamer. A data base server is coupled to the camera and can store metadata for a video clip from the camera or streamer. A media storage server is coupled to both the camera or, the streamer, and to the data base server to store the clip in the absence of any network video recorders.
US08830318B2
An on-vehicle three-dimensional video system is provided for a vehicle and a method is provided for monitoring a surrounding environment of a vehicle. The on-vehicle three-dimensional video system includes, but is not limited to cameras, a display screen, a control module, and a power supply device. The cameras are provided in pairs for filming the surrounding environment of the vehicle from different angles, and the display screen is able to bring about a three-dimensional video effect according to pairs of video signals from the cameras. With the on-vehicle three-dimensional video system, a realistic three-dimensional output of the surrounding environment of the vehicle is realized on the display screen so that the driver can clearly know about the precise relative position of a corresponding portion of the vehicle with respect to the surrounding environment.
US08830311B2
The disclosure provides an electronic device and a detecting position method adapted for the electronic device. The device stores an infrared sensing mode and a capture mode. The method includes steps of: entering the infrared sensing mode in response to an input signal and capturing infrared signals from an external environment, amplifying the infrared signals and converting the infrared signals into digital signals, evaluating whether part of the infrared signals falls into a predetermined waveband, if yes, focusing on an infrared thermal source whose infrared signals fall into the predetermined waveband, switching from the infrared sensing mode to the capture mode, taking a photo of the infrared thermal source, and processing the photo to identify a position of the infrared thermal source in the photo and displaying the position of the infrared thermal source in the photo.
US08830310B2
A capsule endoscope includes: a light emitting unit; an imaging unit; an image signal processing unit; and a setting unit that controls the light emitting unit and the imaging unit to perform pre-exposure, measures at least one of a light emission time and a light emission intensity, sets the measured time or intensity for a main exposure process when the measured time or intensity is within a predetermined acceptable range, and sets at least one of the preset light emission time and light emission intensity for the main exposure process when the measured time or intensity is out of the acceptable range, wherein an acquisition process of an image is performed in accordance with the set light emission time or the set light emission intensity.
US08830309B2
A hierarchical pattern matching process is improved for use in three-dimensional reconstruction by calculating a disparity field for low-resolution data, and using this low-resolution disparity field to estimate the disparity field for higher-resolution images. By pre-warping a template according to the estimated disparity field, improved correlation results can be obtained.
US08830294B2
In the field of communications, a method and a system for video conference control, videoconferencing network equipment, and a videoconferencing site are provided. The method for video conference control includes: assigning a site identifier to a videoconferencing site, and constructing a site list to be delivered to the videoconferencing site; receiving a conference control request sent by the videoconferencing site, the conference control request carrying a site identifier and an operation type of a controlled site; and performing a conference control operation on the controlled site according to the conference control request.
US08830291B2
Embodiments described can more effectively complete complicated service transactions in a more efficient manner by having a team of well-trained professionals who are instantly “streamed” into any location as necessary. A two-way communication system can provide instant or quick access to the right expert at the right point in time, thereby converting what might otherwise be a negative customer experience into a positive sales and service opportunity. A computer implemented method for providing customer support comprises receiving, by a touchpoint device, identification information from a user of the touchpoint device; receiving the identification information; providing an electronic document to the user; receiving an input from the user requesting a session with a representative; selecting a representative based at least in part on the electronic document; providing information about the electronic document to the representative; and establishing a connection between the representative and the touchpoint device.
US08830290B2
An audio-video synchronization method is executable in a video conference device. The method includes determining a first presence time of a predetermined visual effect in a captured video sample stream and a second presence time of a predetermined sound effect in a captured audio sample stream, calculating a time difference between the first and second presence time, and adjusting timestamps of each real-time transport protocol packet in an audio stream sent out by the video conference apparatus based on the time difference. The method further includes receiving an adjustment value from an user input, and adjusting timestamps of each real-time transport protocol packet in an audio stream received by the video conference apparatus based on the adjustment value.
US08830287B2
A surface-emission laser array comprises a plurality of surface-emission laser diode elements arranged in the form of a two-dimensional array, wherein a plurality of straight lines drawn perpendicularly to a straight line extending in a first direction from respective centers of the plurality of surface emission laser diode elements aligned in a second direction perpendicular to the first direction, are formed with generally equal interval in the first direction, the plurality of surface-emission laser diode elements are aligned in the first direction with an interval set to a reference value, and wherein the number of the surface-emission laser diode elements aligned in the first direction is smaller than the number of the surface-emission laser diode elements aligned in the second direction.
US08830277B2
An image display device includes an image display panel configured of pixels made up of first, second, third, and fourth sub-pixels being arrayed in a two-dimensional matrix shape, and a signal processing unit into which an input signal is input and from which an output signal based on an extension coefficient is output, and causes the signal processing unit to obtain a maximum value of luminosity with saturation S in the HSV color space enlarged by adding a fourth color, as a variable, and to obtain a reference extension coefficient based on the maximum value, and further to determine an extension coefficient at each pixel from the reference extension coefficient, an input signal correction coefficient based on the sub-pixel input signal values at each pixel, and an external light intensity correction coefficient based on external light intensity.
US08830276B2
An imaging apparatus includes a first display unit of which brightness is adjustable, a second display unit which can illuminate a display surface, an operation member configured to be operated by a user, and a control unit configured to display a screen for adjusting brightness of the first display unit on the first display unit and to turn on or turn off an illumination of the second display unit by operating the operation member when both of the first display unit and the second display unit are in a display state.
US08830263B2
The medical image display device is provided with a medical image reading unit configured to read a medical image obtained by a medical image diagnostic apparatus, a projected image creating unit configured to project the medical image onto a projection plane to created the projected image, and a projected image display unit configured to display the projected image, wherein the projected image creating unit has a virtual liquid generating unit configured to generate virtual liquid, the light transmittance of which is not zero and a virtual liquid adding unit configured to add the virtual liquid to the surface of an organ within the medical image, and creates a projected image of the medical image to which the virtual liquid has been added.
US08830257B2
An image displaying apparatus executes FRC process, wherein image deterioration in a boundary portion between a still image display area and its periphery is prevented. When the magnitude of the motion vector of an object in the periphery of a still image display area is less than a predetermined threshold value, an interpolation frame generation portion defines the pixel values of a still image display area and its periphery of the frame #n as the interpolation pixel values of a still image display area and its periphery of the interpolation frame #I.When the magnitude of the motion vector of the object is equal to or greater than the predetermined threshold value, the pixel values of the still image display area and its periphery of the frame n+1 are defined as the interpolated pixel values of the still image display area and its periphery of the interpolation frame #I.
US08830252B2
A color-temperature-compensation (CTC) method and applications thereof are provided, and which includes determining intensities of weights of three colors in an inputted three-dimension color signal; if yes, performing a lookup table mechanism to find-out a first set of multi-primary-color (MPC) signal corresponding to the three colors with the same weights, and performing a digital-gamma-correction (DGC) to the first set of MPC signal for providing a first set of CTC signal accordingly; if no, performing the lookup table mechanism to find-out a second set of MPC signal corresponding to the three colors with different weights, and performing the DGC to the second set of MPC signal for providing a second set of CTC signal accordingly; and making at least one same color with the same intensity in the three colors with the same weights and in the three colors with different weights displaying on an MPC display have different brightness.
US08830245B2
Disclosed are various embodiments for facilitating load balancing between central processing units (CPUs) and graphics processing units (GPUs). A request is obtained to execute a first application in one or more computing devices. In one embodiment, a second application associated with the first application is assigned to be executed in GPUs of the one or more computing devices instead of CPUs of the one or more computing devices when a resource usage profile associated with the first application indicates that the first application is relatively more CPU intensive than GPU intensive. Conversely, the second application is assigned to be executed in the CPUs instead of the GPUs when the resource usage profile indicates that the first application is relatively more GPU intensive than CPU intensive.
US08830242B2
A method, system, and computer-readable storage medium are disclosed for simulating brush behavior. In one embodiment, user input may be received to modify an image using a brush model, wherein the brush model comprises data stored in a memory of a computer system. The brush model may comprise a plurality of bristle representations. The user input may comprise a motion of the brush model. An effect of each of the plurality of bristle representations on the image throughout the motion may be determined. The image may be modified based on the determined effect of each of the plurality of bristle representations on the image throughout the motion.
US08830235B1
An irregular connectivity mesh representative of a surface having an arbitrary topology is processed using a non-uniform relaxation procedure. The non-uniform relaxation procedure minimizes differences between vectors normal to faces of pairs of triangles having a common edge and located within a designated neighborhood of a given vertex. The relaxation procedure may be used to construct subdivision and pyramid algorithms for performing processing operations such as upsampling, downsampling and filtering on irregular connectivity meshes. The signal processing algorithms may be utilized in applications such as smoothing, enhancement, editing, texture mapping and compression.
US08830227B2
A method for depth mapping includes capturing an electronic image of a scene using an imaging device. The electronic image is processed to generate depth data with respect to the scene. The gain of the imaging device is set responsively to the depth data.
US08830226B2
Systems, methods, and computer-readable media are provided for integrating a three-dimensional asset with a three-dimensional model. Each asset can include a base surface and either a protrusion or a projection extending from the base. Once the asset is placed at a particular position with respect to the model, one or more vertices defining a periphery of the base surface can be projected onto an external surface of the model. Then, one or more portions of the asset can be deformed to provide a smooth transition between the external surface of the asset and the external surface of the model. In some cases, the asset can include a hole extending through the external surface of the model for defining a cavity. A secondary asset can be placed in the cavity such as, for example, an eyeball asset placed in an eye socket asset.
US08830222B2
An apparatus determines whether a current display is a web screen, when a user operation performed via the web screen indicates a display of a native screen and when a web server instructs the apparatus to display the native screen. The apparatus switches the current display to the native screen when the current display is the web screen, and maintains the current display when the current display is not the web screen.
US08830205B2
The present invention provides a mutual capacitive multi-touch screen. The conductive strip pattern allows that, when a touch range of each external conductive object on the mutual capacitive multi-touch screen is larger than a predetermined condition, capacitive coupling between each external conductive object and first conductive strip is greater than capacitive coupling between each external conductive object and second conductive strip, such that the proportion of a driving signal flowing out of the first conductive strip via at least one first external conductive object in the external conductive objects and into the second conductive strip via at least one second external conductive object in the external conductive objects decreases as the number of second external conductive objects increases.
US08830196B2
An information processing apparatus may include a touchpad, a hardware processor, and a storage medium coupled to the processor. The storage medium may store instructions that, when executed by the processor, cause the information processing apparatus to receive a proximity signal indicative of whether a user is providing input to the touchpad; receive a movement signal indicative of whether the input includes movement of an object relative to the touchpad and/or whether the input includes movement of the object from an outer area surrounding an inner area of the touchpad to the inner area of the touchpad; and select one of a pointing user input mode or a scrolling user input mode based on the signals.
US08830190B2
Display devices, methods, and programs display an image on a touch panel. The devices, methods, and programs detect a start position, which is a detected position where a user's finger starts to contact the touch panel, calculate a moving amount by multiplying a distance between the detected start position and a detected second position of the user's finger by a predetermined coefficient of less than one, and update the display position of the image in a direction moving from the detected start position toward the detected second position until the moving amount is equal to or less than a minimum moving amount.
US08830189B2
A monitoring unit is presented for use in monitoring a behavior of at least a part of a physical object. The monitoring unit comprises: a data input module configured for receiving measured data indicative of a behavior of at least a part of the physical object in a certain coordinate system associated with a predetermined sensing surface; and a digital signal processor configured and operable to be responsive to said measured data for transforming the measured data into an approximate representation of said at least portion of the physical object into a virtual coordinate system such that the transformation maintains a positional relationship between virtual points and corresponding portions within said at least part of the physical object. This technique enables further formatting of said approximate representation into a predetermined data input format of a certain electronic device.
US08830181B1
An apparatus and method for identifying gestures performed on a touch-sensing surface. In one embodiment, a gesture recognition unit processes an input signal to determine input metrics associated with contacts at the touch-sensing surface. The gesture recognition unit identifies a gesture based on comparing at least one of the input metrics with a threshold value associated with the gesture.
US08830173B2
A signal line used in a key matrix is shared between a signal line used in a first display unit and a signal line used in a second display unit. Two types of periodical pulse signals are superimposed on a level signal which indicates data displayed on the second display unit. One type is a pulse signal for detecting key input and another type is a pulse signal which indicates data displayed on the first display unit.
US08830170B2
An optical pointing system includes a plurality of light sources, an image receiver, and an analyzing unit. The plurality of light sources are disposed on multiple locations of an object and configured to provide light having distinct wavelengths. The image receiver is configured to detect optical signals of the plurality of light sources, thereby generating a plurality of corresponding images. The analyzing unit is configured to calculate a relative position or angle of the image receiver with respect to the object according to the images.
US08830166B2
A sleeve of control device is provided for controlling a cursor motion of an electronic device. A touch-feel enhancing mechanism is formed on an outer surface of the sleeve. The touch-feel enhancing mechanism is not related to the function of operating the control device to detect the rotating action or the moving action by the user. The touch-feel enhancing mechanism is only used to enhance comfort and touch feel of operating the control device.
US08830162B2
The present invention relates to a system and method that generates outputs based on the operating position of a sensor which is determined by the biomechanical positions or gestures of individual operators. The system including a garment on which one or more than one sensor is removably attached and the sensors provide a signal based on the biomechanical position, movement, action or gestures of the person wearing the garment, a transmitter receiving signals from the sensors and sends signals to a computer that is calibrated to recognize the signals as representing particular positions that are assigned selected outputs. Suitably the outputs are audio outputs of an instrument, such as a guitar, and the outputs simulate the sound of a guitar that would be played when the biomechanical motion, action, gesture or position of the operator resembles those that would occur when an actual instrument is played.
US08830161B2
Embodiments of the invention relate to methods and systems for providing customized “haptic messaging” to users of handheld communication devices in a variety of applications. In one embodiment, a method of providing virtual touch to a handheld communication device includes: receiving an input signal associated with a virtual touch; outputting a request relating to a contact with a user-interface member coupled to a handheld communication device; and providing a control signal associated with the contact to an actuator coupled to the handheld communication device, the control signal being configured to cause the actuator to output a haptic effect associated with the virtual touch.
US08830157B2
A display apparatus includes display means for displaying an image, a light source that irradiates light to the display means, and control means for controlling the quantity of light of the light source with pulse width modulation. The control means controls the quantity of light of the light source based on the ratio of the light-on period with pulse width modulation to the light-off period when the light source is turned off.
US08830151B2
Provided are a backlight unit capable of improving light efficiency and acquiring a high-luminance image by implementing a color image without using a color filter having the large light loss and a liquid crystal display including the same. The backlight unit includes: a white light source generating white light, a light guide plate into which the white light is inputted, a blue phosphor sheet formed above the light guide plate and transmitting the white light, and a multi-color phosphor sheet formed on the same plane above the blue phosphor sheet and including a plurality of red phosphor layers, green phosphor layers, and transparent layers which transmit the light transmitted through the blue phosphor sheet.
US08830146B2
An EL display device capable of performing clear multi-gradation color display and electronic equipment provided with the EL display device are provided, wherein gradation display is performed according to a time-division driving method in which the luminescence and non-luminescence of an EL element (109) disposed in a pixel (104) are controlled by time, and the influence by the characteristic variability of a current controlling TFT (108) is prevented. When this method is used, a data signal side driving circuit (102) and a gate signal side driving circuit (103) are formed with TFTs that use a silicon film having a peculiar crystal structure and exhibit an extremely high operation speed.
US08830142B1
Disclosed herein are a head-mounted display and a method of controlling the same, more particularly, a method of providing a first content or second content to a display unit according to detachment or mounting of a camera from or to the head-mounted display.
US08830141B2
A substantially transparent windscreen head-up display of a vehicle is configured to display graphical images from a light source. The windscreen head-up display includes multiple layers having an outer layer including a transparent substrate. The multiple layers further include a second transparent substrate layer including light emitting material, wherein the light emitting material emits visible light in response to absorption of ultraviolet light from the light source, and wherein the light emitting material includes a plurality of light emitting particles. The multiple layers further include an inner ultraviolet anti-reflective layer.
US08830137B2
An integrated distributed active radiator (DAR) device includes first and second conductors disposed adjacent to each other. The conductors define curves which close on themselves to within a distance of a gap. The first conductor first end is electrically coupled to the second conductor second end across the gap. The second conductor first end is electrically coupled to the first conductor second end across the gap. At least one active element is configured to produce a self-oscillation current at a frequency f0. The self-oscillation current has a first direction in the first conductor and a second direction in the second conductor. The DAR device is configured to generate a harmonic current which has the same direction in both conductors. The DAR device is configured to efficiently radiate electromagnetic energy at a harmonic frequency and to substantially inhibit the radiation of electromagnetic energy at the frequency f0.
US08830133B2
A circularly polarized array antenna (30) is disclosed. A single layer dielectric substrate (36) has a ground plane (32) located on its upper surface of the substrate and covering only part of the upper surface. A plurality of antenna elements (40-54) are also located on said upper surface of the substrate. Each antenna element has a slot element (60-74) formed in the ground plane and a respective loading element (80-94) located within each slot element. The antenna elements being arranged in a regular array where each respective slot element is sequentially rotated in space with respect to adjacent slot elements, and the loading elements generate a perturbation under excitation. A microstrip feed network (100) is located on the underside of the substrate to provide excitation to each slot element, and including feeds of different lengths to be electrically sequentially rotated in common with spatial rotation of the slot elements. A single microstrip feed point (108) extends to the edge of the substrate for connection purposes. A reflecting plane is located parallel to and spaced apart from the underside of the substrate. The ground plane extends to cover the entire microstrip feed array.
US08830126B2
An apparatus having multiple mushroom structures is disclosed. Each of the multiple mushroom structures includes: a ground plate; a first patch provided parallel to the ground plate with a separation of a distance to the ground plate; and a second patch provided parallel to the ground plate with a separation of another distance to the ground plate, which another distance being different from the distance from the first patch to the ground plate, wherein the second patch is a passive element which is capacitatively coupled with at least the first patch.
US08830118B2
A method of monitoring operation of a radar level gauge system installed at a tank and arranged to determine a filling level of a product contained in the tank. The method comprises the steps of: providing a first propagation property discontinuity at a first distance from a reference position at a top of the tank; generating and transmitting an electromagnetic signal; propagating the transmitted electromagnetic signal towards the product contained in the tank; receiving a reflected electromagnetic signal comprising a plurality of echoes resulting from reflections at propagation property discontinuities encountered by the transmitted electromagnetic signal, including a first reference echo resulting from reflection at the first propagation property discontinuity and a surface echo resulting from reflection at a surface of the product contained in the tank; identifying the surface echo; determining the filling level based on the surface echo; evaluating a first portion of the reflected electromagnetic signal exhibiting a time-of-flight corresponding to the first distance from the reference position; determining, based on the evaluation, whether or not the first reference echo is detectable in the first portion of the reflected electromagnetic signal. If it is determined that the first reference echo is detectable in the first portion of the reflected electromagnetic signal, a first signal indicative of the filling level is provided; and if it is determined that the first reference echo is non-detectable in the first portion of the reflected electromagnetic signal, a second signal different from the first signal is provided.
US08830115B2
A multiple-sensor tracking method, notably implemented in an air traffic control system, making it possible to reduce the latency time introduced by the tracking system, characterized in that the correlation (302) and association (303) functions work on the basis of membership of the detections (502) and of the tracks (503, 504) to cells (510, 511) defining a subdivision into a grid (501) of the surveillance area represented on a stereographic projection plane.
US08830114B2
A mobile object detecting apparatus includes first radiation detecting means; and second radiation detecting means for radiating an electromagnetic wave having the same frequency as the electromagnetic wave radiated by the first radiation detecting means such that the radiated electromagnetic wave passes near a point in the first radiation detecting means from which the electromagnetic wave is radiated, and detecting a standing wave which is generated due to reflection of the radiated electromagnetic wave at an object; wherein a distance, over which the electromagnetic wave radiated by the first radiation detecting means travels until it reaches near the first radiation detecting means, corresponds to a distance of an integral multiple of a wave length of a half cycle of the electromagnetic waves radiated by the radiation detecting means plus a wave length of a predetermined period which is smaller than the half cycle.
US08830099B1
Various embodiments of the invention provide for cancellation of a residue amplifier output charging current at the reference voltage source of the reference buffer thereby preventing the charging current from altering the effective reference voltage of a reference buffer. In certain embodiments, current cancellation is accomplished by subtracting a current of the same magnitude.
US08830094B1
An exemplary integrated circuit for performing time skew extraction includes a first subtractor, an array of subtractors separate from the first subtractor, and an array of averaging circuits. Inputs of the first subtractor are coupled to outputs of a plurality of channels of an interleaved analog-to-digital-converter and computes distances between samples of a signal that are measured consecutively by pairs of channels in the plurality of channels. At least some averaging circuits in the array of averaging circuits compute an average of those of the distances that correspond to a respective one of the pairs of channels; one averaging circuit in the array of averaging circuits computes an average of all of the distances. Each subtractor in the array of subtractors computes a difference between an average computed by one of the at least some of the averaging circuits and the average of all of the distances.
US08830092B2
Techniques for encoding data based at least in part upon an awareness of the decoding complexity of the encoded data and the ability of a target decoder to decode the encoded data are disclosed. In some embodiments, a set of data is encoded based at least in part upon a state of a target decoder to which the encoded set of data is to be provided. In some embodiments, a set of data is encoded based at least in part upon the states of multiple decoders to which the encoded set of data is to be provided.
US08830080B2
An emergency lighting system for a building includes at least one LED-based light. An emergency detector is operable to detect an emergency. The emergency detector produces an emergency signal in response to the emergency. A controller is operable to control the at least one LED-based light in response to the emergency signal.
US08830075B2
A method of utilizing device indicator lights is disclosed herein. The method includes providing a device that includes a plurality of device indicator lights and a user control, and monitoring a first set and a second set of device states. The first set of device states correspond to binary device states, and the second set of device states correspond to analog device states. The method also includes utilizing each of the plurality of device indicator lights individually to communicate one of first set of device states, determining whether the user control has been activated, and utilizing at least two of the plurality of device indicator lights in concert to communicate one of the second set of device states upon a determination that the user control has been activated.
US08830072B2
A Radio Frequency Identification (RFID) tag according to one embodiment includes a controller for setting one or more alarm states upon occurrence of one or more alarm conditions, and a visual display device under control of the controller, the visual display device providing a visual, audible, and/or tactile indicator of an alarm condition when an alarm state is set. The visual, audible, and/or tactile indicator of the alarm condition optionally can only be reset by an authorized entity, or cannot be reset.
US08830062B2
Systems and methods to use radar systems for radio frequency identification (RFID) applications. In one embodiment, radar systems are adapted to use RFID communications protocols and methods to enhance the usefulness of radar systems beyond the determination of the presence, distance, direction and/or speed of a vehicle or object, to additionally include the transmission of data such as object identification and additional messages or data.
US08830053B2
Methods and apparatus for monitoring remotely located objects with a system including at least one master data collection unit, remote sensor units, and a central data collection server are described. The master unit is configured to monitor any object, mobile or stationary, including monitoring multiple remote sensor units associated with the monitored objects. The master unit may be in a fixed location or attached to a mobile object. The master unit is configured for monitoring objects that enter and leave an area. The master unit may act as a parent controller for one or more child devices including remote sensors or monitors of measurable conditions including environmental conditions, substance identification, product identification, and/or biometric identification. The master unit may discover remote sensor units as they enter or leave the area where the master unit is located. The master unit can be remotely reprogrammed such as with authenticated instructions.
US08830047B2
A system and method are provided for monitoring transportation system vehicle operator use of a mobile device. A directional antenna detects a signal produced by a mobile device within a vehicle operator area of a transit vehicle. The signal is transmitted from the directional antenna to an antenna controller. An event signal corresponding to the signal is generated at the antenna controller and the event signal is transmitted from the antenna controller to a logic unit. The logic unit determines a current status of the vehicle. The logic unit stores mobile device use event data in a memory based on the event signal and the current status of the vehicle.
US08830045B2
A light display is mounted on the spokes of a rotating bicycle wheel. The display includes a plurality of individual arrays of lights forming a set. The set of arrays are attached together into a single rigid light display apparatus attached to a spoke of the wheel at the tip of each array of lights. At least one sensors on the apparatus, senses the angular velocity and angular position of the rotating wheel. A microprocessor, is mounted on one of the arrays of lights and connected to the sensor, and is further connected to a shared electrical bus which traverses every array of lights. The shared electrical bus is formed by the electrical connection of all the arrays of lights in a line or loop topology. Each array of lights has at most two connection points to the shared electrical bus. The microprocessor modulates the plurality of arrays of lights via the shared electrical bus and without a direct connection to every array of lights. The arrays of lights are modulated according to a selected one of a plurality of display patterns and the sensed angular velocity and position of the rotating wheel, to form a stabilized, upright, forward-reading image on both sides of the wheel using persistence of vision of a viewer.
US08830032B2
Embodiments of the present invention provide an approach for confirming/verifying an identity of a test taker using a biometric analysis. For example, in the medical field, it is desirous to ensure that a given test is being administered to a correct individual (e.g., “test taker’). By comparing a given/submitted identity against a biometric-based identity, such verification can be performed. In one embodiment, the individual will submit biometric information via a biometric reader or the like coupled to a testing apparatus. The identity submitted by or on behalf of the individual (referred to herein as a “submitted identity”) will then be confirmed against the individual's identity as determined based on the biometric reading (referred to herein as a “biometric-based identity”). If the submitted identity and the biometric-based identity match, results of the test will be accepted. If the two identities do not match, then results of the test will be denied. Alternatively, if the identities do not match, then the testing apparatus could refuse to commence or complete the test.
US08830019B2
The structure includes cylindrical columnar and tubular bonded magnets. The columnar magnet has at least one pair of N and S poles that are alternately produced in the longitudinal direction. The tubular magnet surrounds the columnar magnet, and has at least one pair of N and S poles that are alternately produced in the longitudinal direction. Poles of the columnar and tubular magnets that are opposed to each other in the direction perpendicular to the axis of the columnar magnet as the propulsion force direction are of opposite magnetic polarity so that magnetic fields are produced in the direction perpendicular to the propulsion force direction. The surface magnetic flux density profile balance can be smoothed by adjusting higher and lower parts of the profiles of the columnar and tubular magnets.
US08830018B1
A solenoid-driven automatic bus transfer switch may automatically transfer one or more electrical loads from a first power source to a second power source, or vice versa, in the event of a power failure or other casualty that affects either power source. The transfer switch may be operated in response to the energization of a solenoid coil, which causes a main shaft having a transfer element to rotate from being in contact with the first power source to being in contact with the second power source. The transfer element may be spring-mounted to the shaft, which ensures that a sufficient electrical contact exists between the surfaces of the transfer element and the respective leads of the first and second power sources, regardless of any wear or degradation that may be experienced at any of the surfaces.
US08830012B2
In one aspect of the invention, the acoustic wave resonator includes a resonator structure having a first electrode, a piezoelectric layer formed on the first electrode, and a second electrode formed on the piezoelectric layer, and a composite layered structure associated with the resonator structure such that the immunity of the acoustic wave resonator to environmental change and aging effects is improved, the trimming sensitivity is substantially minimized, and/or dispersion characteristics of the acoustic wave resonator is optimized.
US08830002B2
Apparatuses, methods, systems, algorithms, and circuits for reference clock frequency determination are disclosed. In one embodiment, a circuit for detecting a reference clock frequency can include a clock counter configured to count a number of cycles of the reference clock over a predetermined portion of a sleep clock to provide a reference clock cycle count, where the sleep clock has a known frequency and a predetermined accuracy; a frequency estimator configured to estimate the reference clock frequency from the reference clock cycle count and the known frequency of the sleep clock; and a frequency selector configured to select a closest frequency to the estimated reference clock frequency from a plurality of allowed frequencies.
US08830000B2
Provided is a multi-band amplifier and a method of amplifying a multi-band. The multi-band amplifier includes a wireless signal input terminal into which a first frequency band signal and a second frequency band signal are input, a first impedance matching part connected to the wireless signal input terminal and configured to match an input impedance in a first frequency band, a second impedance matching part connected to the wireless signal input terminal and configured to match an input impedance in a second frequency band, a common source amplifier to which the first impedance matching part and the second impedance matching part, and a common gate amplifier connected to the common source amplifier. Accordingly, performance degradation can be reduced in comparison with a conventional amplifier, broadband amplification as well as narrow band amplification can be performed, and an amplification gain can be adjusted.
US08829999B2
A low noise amplifier includes a first Group III-nitride based transistor and a second Group III-nitride based transistor coupled to the first Group III-nitride based transistor. The first Group III-nitride based transistor is configured to provide a first stage of amplification to an input signal, and the second Group III-nitride based transistor is configured to provide a second stage of amplification to the input signal.
US08829998B2
A Doherty power amplifier including a main amplifier, an auxiliary amplifier and a controller governing the operation of the auxiliary amplifier, the controller being operative to switch the operational state of the auxiliary amplifier between an operational state and a non-operational state as a function of input signal voltage supplied to the power amplifier such that the auxiliary amplifier is inoperative when the input voltage is below an input voltage threshold and is operative when the input voltage is above the input voltage threshold.
US08829991B2
This document discusses, among other things, an amplifier circuit including first and second amplifiers configured to receive an input signal and to provide a differential output signal using a feedback loop including a transconductance amplifier. A non-inverting input of a first amplifier can be configured to receive an input signal. The feedback loop can be configured to receive the outputs from the first and second amplifiers and to provide a feedback signal to the non-inverting input of the second amplifier, for example, to reduce a DC offset error or to increase a dynamic range of the amplifier circuit.
US08829990B2
An amplifier may include two or more pulse-width modulators controlling respective sets of switches to produce an amplified version of a source signal. A positive DC-offset based on the source signal may be applied to the pulse-width modulator controlling one respective set of switches, and an equal value negative DC-offset may be applied to the pulse-width modulator controlling the other respective set of switches, to provide an effective offset between the respective points in time of the rising/falling edges of the different pulse-width modulated control signals. The addition of alternating positive and negative DC-offset values doesn't affect the output load, and doesn't degrade the signal. The DC-offsets may be added at a frequency selected to be beyond the signal baseband, and the value of the small input signal level may be determined using an RMS level comparator or similar measurement technique.
US08829987B2
The invention relates to modulation and demodulation circuits, such as envelope detectors used to demodulate amplitude-modulated (AM) signals. By coupling an analog circuit to a port of a digital component, a compact envelope detector can be obtained, which achieves demodulation of AM signals for direct coupling into a digital input port. Accordingly, a compact envelope detector may be used in the data receiving part of a sealed device requiring post-manufacturing data transfer, in combination with additional components that provide electromagnetic coupling, such as inductive, capacitive, or radiative. An example of such a device is a credit card sized authentication token.
US08829984B2
A system and method are disclosed for securely transmitting and receiving a signal. A nonlinear keying modulator is used in the transmitter to encrypt the signal using a nonlinear keying modulation technique. A nonlinear keying demodulator is used in the receiver to decrypt the signal.
US08829983B1
An embodiment of an apparatus is disclosed. For this embodiment, an output driver and a bias voltage controller are included. The bias voltage controller is coupled to provide first and second bias voltages to the output driver. The bias voltage controller comprises a bias generator coupled to a first voltage supply, a second voltage supply, and a ground node. The bias generator has a first bias node for sourcing the first bias voltage. The first voltage supply is configured to provide a higher voltage level than the second voltage supply. A resistor-divider network is coupled to the first voltage supply and the ground node. A watch dog circuit is coupled to the resistor-divider network, bias generator, and the ground node. A comparison circuit is coupled to the bias generator and the second voltage supply. The comparison circuit has a second bias node for sourcing the second bias voltage.
US08829976B2
A switching-element drive circuit that is configured to be applied to a power converter includes: a switching element; and a control unit that controls an operation of the switching element. The control unit includes a drive-voltage control unit that is configured to be capable of changing a switching speed of the switching element based on a power supply current.
US08829974B2
A frequency mixer circuit includes a mixer, a load stage, and again stage. The load stage cooperates with the mixer to generate a differential output voltage signal with a mixed frequency according to a differential local oscillator voltage signal and a differential input voltage signal. The gain stage has a transconductance, and a magnitude of the differential current signal and the transconductance have a positive relationship therebetween, so as to result in a positive relationship between the transconductance and a conversion gain which is a ratio of magnitude of the differential output voltage signal to magnitude of the differential input voltage signal.
US08829963B1
In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CKT and CLKN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, SS, SSN RE, and PREN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
US08829957B1
A clock signal from a first electronic subsystem is distributed to a second electronic subsystem. The second electronic subsystem is remote from the first electronic subsystem and coupled to the first electronic subsystem by a bidirectional signal path. A first clock signal is generated on the first electronic subsystem and a training signal is generated on the first electronic subsystem clocked by the first clock signal. The training signal is sent on the bidirectional signal path on a round trip to the second electronic subsystem and back to the first electronic subsystem. A phase of the training signal is adjusted symmetrically on the way to the second electronic subsystem in a first phase adjuster and on the way back to the first electronic subsystem in a second phase adjuster until the measured time for the round trip is equal to an even number of clock cycles.
US08829938B2
A measuring method and device for characterizing a semiconductor component (1) having a pn junction and a measuring surface, which has a contacting subarea, covered by a metallization. The method including: A. Planar application of electromagnetic excitation radiation onto the measuring area of the semiconductor component (1) for separating charge carrier pairs in the semiconductor component (1), and B. spatially resolved measurement of electromagnetic radiation originating from the semiconductor component (1) using a detection unit. In one step A, a predetermined excitation subarea of the measuring surface has a predetermined intensity of the excitation radiation and at least one sink subarea of the measuring surface has an intensity of the excitation radiation which is less than the intensity applied to the excitation subarea. The excitation and sink subareas are disposed on opposite sides of said contacting subarea and adjoin it and/or entirely or partially overlap it.
US08829934B2
An apparatus for interrogating an electronic circuit supported by a substrate includes a tester external to the substrate and comprising an tester transceiver. A testing circuit is supported by the substrate and connected to the electronic circuit. The testing circuit includes a processor and a testing circuit transceiver in communication with the tester transceiver for transmitting instructions from the tester to the processor and for transmitting results of an interrogation from the processor to the tester. The processor being programmed to process instructions from the tester to interrogate the electronic circuit with an interrogation corresponding to the instructions.
US08829931B2
A testing method is described of at least one device provided with an integrated testing circuit and in communication with at least one tester where messages/instructions/test signals/information are exclusively sent from the tester to the device. A testing architecture is also described for implementing this testing method.
US08829930B2
An apparatus and method of testing electrical impedance of a multiplicity of regions of a photovoltaic surface includes providing a multi-tipped impedance sensor with a multiplicity of spaced apart impedance probes separated by an insulating material, wherein each impedance probe includes a first end adapted for contact with a photovoltaic surface and a second end in operable communication with an impedance measuring device. The multi-tipped impedance sensor is used to contact the photovoltaic surface and electrical impedance of the photovoltaic material is measured between individual first ends of the probes to characterize the quality of the photovoltaic surface.
US08829921B2
An AC voltage detection circuit includes a conversion module, a comparison module, and a prompt module. The conversion module connects to an AC power source and converts the AC voltage provided by the AC power source to an AC current, and then converts the AC current to a direct current (DC) voltage reflecting the AC voltage. The comparison module is connected to the conversion module, and compares the DC voltage with a first predetermined voltage and a second lesser predetermined voltage, and produces a control signal when the DC voltage is greater than the first predetermined voltage or less than the second predetermined voltage. The prompt module produces a prompt signal when receiving the control signal.
US08829919B2
Method and system for monitoring the condition of the capacitor arrangement (14-16) of the DC-voltage intermediate circuit of a power electronics appliance, such as of a frequency converter, at the place of usage, in which method the discharge voltage over the capacitor arrangement as a function of time is measured, and in which method the intermediate circuit is pre-charged with a pre-determined DC voltage, the pre-charging is removed from the intermediate circuit, the voltage of the intermediate circuit is measured by sampling at regular intervals, the voltage drop as a function of time is determined on the basis of the measured voltage of the intermediate circuit, the capacitance or the relative change in it is determined on the basis of the voltage drop, the value of the determined capacitance or of the relative change in it is compared to a pre-determined limit value on the basis of the voltage drop, and the necessary condition monitoring procedure is performed when the value determined with the measurement reaches the pre-determined limit value or is close to it.
US08829917B1
A physical layer device configured to interface with a plurality of pairs of wires. The physical layer device includes a cable test module configured to transmit a pulse over the plurality of pairs of wires, measure a reflection of the pulse as received from the plurality of pairs of wires, and determine whether a short circuit exists in one of the plurality of pairs of wires based on the measure of the reflection of the pulse. An autonegotiation module is configured to perform autonegotiation to establish a link at a particular speed over the plurality of pairs of wires. The particular speed at which the link is established over the plurality of pairs of wires is based, at least in part, on whether a short circuit exists in one of the plurality of pairs of wires as determined by the cable test module.
US08829897B2
A paper position sensor for a ticket printer is disclosed. The ticket printer includes a blank ticket tray and a paper guide consisting of an upper and lower guide, which lower guide contains a position sensor wheel that rotates as a result of the frictional contact with the blank ticket, as the ticket passes over the sensor wheel on its way through the guides. The wheel contains an embedded magnetic element such that as the wheel turns, which magnetically provides rotational position information to an adjacently-mounted sensor chip, which is able to determine, magnetically, the position of the wheel. The sensor chip provides data to the printer control as to the position of the ticket through the printer, and thus the printer control is now able to determine the precise position of the ticket in the printer.
US08829891B2
A digital multimeter includes a single chip processor, a sound chip connected to the single chip processor, a signal amplifying circuit, a speaker connected to the signal amplifying circuit, and a power source for providing electrical energy for the digital multimeter. The single chip processor collects high and low level signals, and converts the signals into codes which the sound chip can recognize, and transmits the codes to the sound chip. The sound chip converts the codes into audio signals and transmits the audio signals to the signal amplifying circuit. The signal amplifying circuit amplifies the audio signals and outputs the amplified audio signals to the speaker. The amplified audio signals reports the measurement values of the digital multimeter.
US08829889B2
A laser protective wall element for a housing in laser machining stations with which increased protection, in particular for the eyes of living beings, can be achieved. In a laser protective wall element for a housing at laser machining stations, an intermediate layer is present which has hot conductor properties. The intermediate layer can be formed between electrically conductive plate-like elements, an electrically conductive plate-like element and an electrically conductive coating or also two electrically conductive layers or can be arranged there. The electrically conductive plate-like elements, the coating and/or the layers are connected to an electrical voltage source as well as a measuring instrument which detects electrical current, electrical resistance and/or electrical capacity and whose measured signal change can be used for the condition monitoring of the laser protective wall element.
US08829884B2
The present invention provides a current balancing circuit and method for balancing the respective currents in a plurality of parallel circuit branches in a target circuit. The current balancing circuit including: a plurality of balancing transistors, each having a collector, an emitter, and a base, the collector and emitter of each balancing transistor connected in series with a respective circuit branch; and a selection circuit for selectively connecting the circuit branch having the smallest current amongst the circuit branches to the bases of each balancing transistor.
US08829882B2
Current circuits, circuits configured to provide a bias voltage, and methods for providing a bias voltage are described, including a current circuit configured to receive a reference current and having an output at which an output current is provided. One such current circuit includes a first current mirror configured to receive a first portion of the reference current and further configured to mirror the first portion of the reference current to provide a first current. The current circuit further includes a second current mirror configured to receive a second portion of the reference current and receive the first current. The second current mirror is further configured to provide a portion of the first current to the output of the current circuit as the output current and to receive another portion of the first current and mirror the same as the second portion of the reference current.
US08829881B2
A reference current generation circuit is provided, in which a current generated according to a bandgap voltage is not directly used as a reference current, but the current generated according to the bandgap voltage is used to adjust an output reference current. In this way, the reference voltage is generated without using an external resistor, so as to effectively decrease the production cost.
US08829878B2
A switching regulator includes a first switching element connected between an input terminal and an output terminal; a second switching element connected between the output terminal and a ground; a switching-time control circuit to generate a first switching-time control signal indicating finish timing of an ON-period of the first switching element, based on a ratio of a length of the ON-period of the first switching element to a sum of lengths of ON-periods of the first and second switching elements; a comparator generate a second switching-time control signal indicating finish timing of the ON-period of the second switching element when a feedback voltage is smaller than a reference voltage; and a switching-element control circuit to control switching of the first and second switching elements so that the first and second switching elements are turned on complementarily based on the first and second switching-time control signals.
US08829874B2
The invention relates to an electronic device and a method for DC-DC-conversion. The electronic device includes energizing switch and a commutating switch coupled at a switching node. The switching node is configured to be coupled to an inductor. The electronic device is configured to repeatedly suspend the regular synchronous switching of the commutating switch during a load detection period, to sense the voltage at the output node during the load detection period and to determine a high-load condition or a light-load condition of the DC-DC-conversion based on the sensed voltage at the output node.
US08829870B2
A voltage conversion apparatus is disclosed in which a current passes through first and second loop circuits alternately in accordance with ON/OFF operation of a first switching element provided in the first circuit. The direction of a magnetic field through the first loop circuit formed at the ON operation is the same as a direction of a magnetic field through the second loop circuit formed at the OFF operation. The first loop circuit and the second loop circuit are provided on opposite sides of a printed circuit board, respectively, in such a manner that the first loop circuit and the second loop circuit are opposed to each other. A heat sink is provided on a surface of the printed circuit board. A solid pattern of a metal material is provided on an inner layer of the printed circuit board to be connected to the heat sink via a through hole.
US08829869B2
A welding or cutting system is provided using an interleaved buck-boost stage which dynamically controls power factor correction and operation of the interleaved buck-boost modules to optimize efficiency and operation of the welding system.
US08829858B2
Systems and methods are provided for initiating a charging system. The method, for example, may include, but is not limited to, providing, by the charging system, an incrementally increasing voltage to a battery up to a first predetermined threshold while the energy conversion module has a zero-percent duty cycle, providing, by the charging system, an incrementally increasing voltage to the battery from an initial voltage level of the battery up to a peak voltage of a voltage source while the energy conversion module has a zero-percent duty cycle, and providing, by the charging system, an incrementally increasing voltage to the battery by incrementally increasing the duty cycle of the energy conversion module.
US08829852B2
A method and device for charging a battery is provided. A charging device transmits a charging initiation request including the meter identifier and a charging identifier to a server, and receives a charging initiation response in response to the charging initiation request from the server. The charging device transmits a charging completion message indicating power consumed for the charging to the server upon completion of the charging, and receives charging information indicating billing information according to the charging of the battery from the server.
US08829838B2
The present invention provides a power converter which, while ensuring safety, implements control for the flow of a constant current in a specified switching element, more accurately determines the lifetime of a switching element, and reduces the number of temperature detectors. The power converter is provided with a mechanism which causes a brake device to operate or which confirms that a brake mechanism is operating. The power converter supplies current to the d-axis and the q-axis of a rotational coordinate system, within the range of the braking torque of the brake mechanism, and passes the desired current to the desired element. Furthermore, temperature detectors are attached only in chips in sections where a crack readily develops in the upper solder layer or peeling is readily generated in the wire bonding, and in chips where a crack readily develops in the lower solder layer.
US08829833B2
A motor control device has a motor driving circuit for driving a motor, a current detection circuit for detecting a motor current flowing through the motor driving circuit, and a controller for calculating a detected value of the motor current based on an output of the current detection circuit, comparing the detected value with a target value of the motor current, and generating a command value for allowing a motor current of the target value to flow through the motor based on a deviation therebetween, to output the command value to a motor driving circuit. The current detection circuit is configured of a first current detection circuit having a positive first gain and a second current detection circuit having a negative second gain obtained by inverting the first gain.
US08829831B2
A parameter estimating apparatus for permanent magnet synchronous motor driving system is disclosed, the apparatus estimating an inductance and a magnet flux linkage of a permanent magnet through a real-time magnetic flux estimation, whereby an operation performance of the PMSM can be enhanced.
US08829827B2
Embodiments of the present disclosure relate to methods, systems and apparatus for controlling operation of an electric machine in a vector controlled motor drive system when the electric machine operates in an overmodulation region. The disclosed embodiments can reduce variations/errors in the phase voltage command signals applied to the multi-phase machine so that phase current may be properly regulated thus reducing current/torque oscillation, which can in turn improve machine efficiency and performance, as well as utilization of the DC voltage source.
US08829822B2
A light source that generally includes multiple light emitting diode (LED) sources emitting light at different colors. A controller energizes the LED sources for establishing a changing pattern of the light colors to provide a decorative effect while simultaneously establishing white light illumination of a target area.
US08829814B2
A backlight module detecting abnormal lamp tubes and an LCD employing such a backlight module are proposed. The LCD includes a voltage calculator for detecting voltage applied on ends of a lamp tube to monitor the lamp tube. Once the lamp tube becomes abnormal, the voltage varies accordingly. The voltage calculator calculates a voltage signal from a plurality of lamp tubes and produces a voltage value. A protection circuit regards the voltage value as a feedback signal to decide if there are any abnormalities. Once any of the lamp tubes is abnormal, the protection circuit transmits the voltage signal to a pulse-width modulated integrated circuit (PWM IC) to activate a protective function. The protection circuit of the present invention obtains the protection signal by sampling the voltage signal of the ends of the lamp tube and then gets the control signal by means of the calculation of the voltage calculator. Thus, voltage level retrieved from the protection signal are less easily affected by dimming and temperature.
US08829809B2
An example control arrangement includes a power supply, a first load operative to receive power when coupled to the power supply, and a second load operative to receive power when coupled to the power supply. A receiver is programmable to couple the first load, the second load, or both to the power supply in response to a wireless signal. A switch includes a wireless transmitter portion powered by a self-energizing portion. A wireless transmitter portion communicates the wireless signal to the receiver in response to an actuation of the switch.
US08829806B2
A variable output module provides accurate full range dimming or adjustment of power output. The variable output module utilizes the characteristics of an AC or other periodic signal rather than its power output to accurately determine the level of dimming a user desires. In this manner, the variable output module provides accurate full range dimming without the need for calibration to specific AC signals. The variable output module can detect the period of an AC signal allowing the driver to be used with various frequencies without the need for calibration. In one or more embodiments, the driver compares the pulse widths of a dimmed AC signal to the period of the AC signal to determine the desired level of dimming.
US08829801B2
Disclosure has power controllers and control methods used therein. A disclosed power controller is adapted for a power converter to power at least one light emitting diode. The power converter includes a power switch with a control gate to make an inductive energized or de-energized. The power converter receives a dimming signal to substantially control the lighting of the light emitting diode. The power controller has a gate-driving circuit, for driving the control gate according to a pulse-width signal and the dimming signal. When the dimming signal is asserted the gate-driving circuit has a first driving force. When the dimming signal is deasserted the gate-driving circuit has a second driving force less than the first driving force.
US08829796B2
In a lighting control system according to an embodiment, a storing unit stores a correspondence relation in which at least one of a plurality of type 2 groups is associated with each of type 1 groups. Methods of distribution of K luminaires are different in the type 1 groups and the type 2 groups. The control unit controls a lighting state of the type 1 groups indicated by an input control signal and subjects a lighting state of the type 2 groups associated with the type 1 groups to be controlled in the correspondence relation to associated control.
US08829794B2
A vehicle lamp include san LED package as a light source. The LED package includes a first series element section having a plurality of LED elements connected in series with each other, a second series element section having at least one LED element, the number of which is smaller than the number of LED elements of the firs series element section, a first anode electrode provided on an anode side of the first series element section, a first cathode electrode provided on a cathode side of the first series element section, a second anode electrode provided on an anode side of the second series element section, and a second cathode electrode provided on a cathode side of the second series element section.
US08829790B2
An organic light emitting diode (OLED) display is disclosed. In one embodiment, the display includes 1) a display panel including i) a display area configured to display an image and ii) a pad area adjacent to the display area and configured not to display an image, 2) a bezel configured to receive the display panel and 3) a reinforcing member positioned between the pad area of the display panel and the bezel. According to at least one embodiment, the deformation of the portion corresponding to the pad area of the display panel among the bezel may be prevented during an external impact, and thereby the twisting strength and the bending strength may be improved.
US08829789B2
An electrode for use in an organic optoelectronic device is provided. The electrode includes a thin film of single-wall carbon nanotubes. The film may be deposited on a substrate of the device by using an elastomeric stamp. The film may be enhanced by spin-coating a smoothing layer on the film and/or doping the film to enhance conductivity. Electrodes according to the present invention may have conductivities, transparencies, and other features comparable to other materials typically used as electrodes in optoelectronic devices.
US08829786B2
In a display apparatus including an organic EL element utilizing the optical interference effect, and a lens, a light absorbing layer is disposed such that, of light radiated from the organic EL element into a protective layer, light radiated at a larger angle than an angle, at which a light intensity distribution of the light radiated into the protective layer with respect to a radiation angle of the light takes a local minimum value, is not output to the outside of the display apparatus through the lens.
US08829784B2
A surface light source device includes an organic electroluminescent element including a luminescent layer and a light-emitting surface structure layer disposed on one of the surfaces of the organic electroluminescent element. In the surface light source device, the light-emitting surface structure layer includes a concave-convex structure provided on a surface thereof on the side toward a device light-emitting surface, and the concave-convex structure includes a plurality of concave portions having oblique surfaces and flat portions disposed around the concave portions. The flat portions and/or the concave portions have a size difference in one or more of their width, height, depth, and spacing, the size difference being larger than the difference that causes interference of one or both of emitted light and reflected light.
US08829775B2
The present invention discloses a semiconductor-based planar micro-tube discharger structure and a method for fabricating the same. The method comprises steps: forming on a substrate two patterned electrodes separated by a gap and at least one separating block arranged in the gap; forming an insulating layer over the patterned electrodes and the separating block and filling the insulating layer into the gap. Thereby are formed at least two discharge paths. The method can fabricate a plurality discharge paths in a semiconductor structure. Therefore, the structure of the present invention has very high reliability and reusability.
US08829774B1
An illumination source includes a heat sink with an inner core region and an outer core region having structures to dissipate heat from the inner core region. An LED assembly is pressed into a thermally-conductive compound disposed between the LED assembly and the inner core region. A retaining clamp is used to mechanically press the LED assembly into the thermally-conductive compound.
US08829773B2
A lighting apparatus with light-emitting diode chips and a remote phosphor layer includes a plurality of LED chips, a cover, a heat sink, a first end cap, a second end cap, at least one PCB, and a LED driver. The plurality of LED chips is positioned on the at least one PCB and electronically connected with the LED driver. The LED driver is electrically connected with male contacts which traverse through the first end cap and the second end cap. The at least one PCB is enclosed with the cover, the heat sink, the first end cap, and the second end cap. The blue light and ultraviolet light from the plurality of LED chips coverts into white or yellow light from a phosphor layer of the cover, where the phosphor layer is remotely positioned from the plurality of LED chips.
US08829771B2
A lighting device includes a heat sink for dissipating heat from a light source. The heat sink is located between an inner case and an outer case, and a power controller is located in the inner case. The light source may include one or more light emitting diodes.
US08829770B2
The excitation source consists of at least three identical electrodes arranged symmetrically in relation to the axis of the central tube, which supplies an analytical sample, and electrode cooling agent supply and removal systems. The electrodes are mounted in an electrically isolated metal housing so that the electrode tops are placed at the central tube outlet, and their ends are shorted in the power supply point with the microwave connections embedded in the housing on the extension of the electrode longitudinal axis and the connections are coupled with the microwave power source, the length of each electrode is ¼ L, where L is the length of the microwave. Each electrode has a hollowed longitudinal flow chamber for the cooling agent connected with metal side tubes, which supply and remove the cooling agent, while outside tube ends are electrically shorted with the housing.
US08829769B1
A keybar or clamping bolt with a high-resistivity coating to protect an electric machine. The coating engages the laminations, flanges and frame rings and forms a part of electrical circuits through which harmful eddy currents circulate. One class of eddy currents, viz., core-fault currents, due to edge burrs or insulation defects, are forced to flow through this coating. The high resistance of the coating weakens the fault currents, preventing creation of hotspots that can cause core failure. Such coated keybar is in inexpensive alternative to traditional recoating and/or core-fault detection. Another class of eddy currents, viz., keybar currents, caused by over-fluxing, are also forced to flow through this coating. The high resistance of the coating weakens the keybar currents, so prevents core-end overheating. A coated keybar also allows the machine to operate at higher leading power factor. It also prevents core-decompression hence protects the machine against loose laminations.
US08829767B2
A generator includes a substrate, a first electrode layer, a dense plurality of vertically-aligned piezoelectric elongated nanostructures, an insulating layer and a second electrode layer. The substrate has a top surface and the first electrode layer is disposed on the top surface of the substrate. The dense plurality of vertically-aligned piezoelectric elongated nanostructures extends from the first electrode layer. Each of the nanostructures has a top end. The insulating layer is disposed on the top ends of the nanostructures. The second electrode layer is disposed on the non-conductive layer and is spaced apart from the nanostructures.
US08829766B2
An acoustic wave resonator device comprising a resonant layer that comprises a series of side-by-side areas of first and second dielectric materials. In one embodiment the first dielectric material is a piezoelectric, in particular the first dielectric material can be a piezoelectric and the second dielectric material can be non-piezoelectric. In another embodiment, the first dielectric material is a piezoelectric of first polarity and the second dielectric material is a piezoelectric of opposite polarity or different polarity. Where needed, the resonant layer is supported on a reflector composed of series of layers of high acoustic impedance material(s) alternating with layers of low acoustic impedance material(s). For example, the reflector comprises AlN, Al2O3, Ta2O5, HfO2 or W as high impedance material and SiO2 as low impedance material.
US08829759B2
A rotating electrical machine includes a rotor configured to rotate about an axis. The rotor includes a rotor lamination stack having a plurality of sheets pressed into a composite assembly in an axial direction and being radially divided into an inner mechanical part and an outer electrical part. A rotor winding is disposed in the electrical part of the rotor lamination stack. A stator is concentrically surrounding the rotor. A plurality of shear bolts is disposed in the mechanical part and configured to reach through the rotor lamination stack. A plurality of further bolts is disposed in the electrical part, the plurality of shear bolts and a plurality of further bolts being configured to press the plurality of sheets in the axial direction.
US08829757B2
A multipolar motor is simply wire-wound and an output thereof is capable of being switched. The motor includes at least 8 magnetic poles, an armature including at least 10 tooth sections; a commutator including at least 20 commutator segments, and brush-sets including 2 positive electrode brushes and 2 negative electrode brushes. A hook-holding section arranged to hook-hold conductor wires is installed on each of the commutator segments. Further, a group of coils is defined by using a single conductor wire that is wound onto each of the plurality of tooth sections and hooked onto the plurality of hook holding sections. This motor can switch the state in which the brush-set is energized.
US08829753B2
A motor includes: a rotor comprising: a rotary shaft; a magnetic body rotatable together with the rotary shaft; and first and second permanent magnets fixed on an outer circumference or an inner circumference of the magnetic body, and a stator comprising: an iron core arranged around the rotor; and a coil for exciting the iron core.
US08829751B2
An electric motor includes a motor casing formed with a shaft insertion hole and a motor output shaft extending in the shaft insertion hole and projecting to a speed reducing mechanism. An annular oil seal is disposed between the shaft insertion hole and the motor output shaft and the annular oil seal includes an annular seal retainer buried in the annular oil seal for reinforcement. A C-shaped stopper member extending circumferentially from a first end to a second end spaced from the first end, is held in a holding portion or a fitting groove of the shaft insertion hole, and arranged to prevent movement of the oil seal toward the speed reducing mechanism. The stopper member includes a plurality of beam segments confronting the seal retainer from an axial direction of the motor output shaft.
US08829749B2
A method for making a rotary electric machine comprises the steps of: preparing a core (18) having a plurality of pole expansions and a plurality of windings (100, 200, 300) made of electrically conductive material on the pole expansions, where at least a part of the windings (100, 200, 300) is made from a conductor wire having a free end (14) that can be connected electrically to a mains power supply; stably coupling to each other at least two free ends (14) of different windings (100, 200, 300) so as to connect them to a single power supply terminal; twisting the coupled ends (14) together to form a single electrical termination (5, 6, 7) twisted along a principal line of extension of the electrical termination (5, 6, 7).
US08829748B2
The present invention relates to a connection molding for automation of a three-phase motor winding, which specifically comprises: a fixed coil part fixed inside of a main body, a coil part installed within the fixed coil part, a central shaft fixed to the main body and passing through the coil part, and a connector part coupled to the top of the coil part so that the coil of the coil part is connected thereto and the central shaft passes and is coupled therethrough.
US08829745B2
A stator system for an electric machine, in particular a generator of a wind turbine is disclosed. The stator system includes a stator segment, a plate, supply system and a manifold segment. The stator segment includes a cooling channel which includes an opening at an axial front face of the stator segment. The plate is mounted to the axial front face for reinforcing the stator segment. The supply system is adapted for supplying cooling fluid to the cooling channel. The manifold segment is welded to the plate for forming a guide channel for the cooling fluid between the manifold segment and the plate. The plate includes a through-hole for generating a connection between the opening of the cooling channel and the guide channel. The supply system is connected to the guide channel.
US08829740B2
A sealed linear motor system is provided. The sealed linear motor system includes a sealed coil assembly having a plurality of coil windings within a base plate and comprising covers disposed about the base plate and coil windings to prevent moisture and/or chemical ingress into the base plate and the coil windings. The sealed linear motor system also includes a sealed magnet assembly disposed adjacent to the coil assembly and comprising a plurality of magnets mounted on a magnet mounting plate and a magnet housing disposed on a surface of the magnet mounting plate to cover and seal the plurality of magnets within the housing.
US08829725B2
Power is fed from a power feeding coil L2 to a power receiving coil L3 by magnetic resonance. A VCO 202 alternately turns ON/OFF switching transistors Q1 and Q2 at a drive frequency fo, whereby AC power is supplied to the power feeding coil L2, and then the AC power is supplied from the power feeding coil L2 to the power receiving coil L3. A phase detection circuit 114 detects a phase difference between current and voltage phases, and the VCO 202 adjusts the drive frequency fo such that the phase difference becomes zero. When load voltage is changed, the detected voltage phase value is adjusted with the result that the drive frequency fo is adjusted.
US08829718B2
A voltage drop of an output voltage of a DC-DC converter, caused by a wiring resistance, can properly be compensated at low cost. The DC-DC converter is connected to a low-voltage battery through an ignition switch and started up by the ignition switch. A transformation unit transforms a voltage inputted from a high-voltage battery and supplies the voltage to the low-voltage battery. A control circuit calculates a wiring resistance between the transformation unit and the low-voltage battery based on the voltage inputted from the low-voltage battery through the ignition switch in connecting the ignition switch and an output voltage and an output current of the transformation unit. The control circuit corrects a command value of the output voltage of the transformation unit based on the calculated wiring resistance to control the output voltage of the transformation unit. The invention can be applied to a DC-DC converter for electric-powered vehicle.
US08829707B2
A method for controlling an aircraft power system having a plurality of generators includes determining a load set for controlling aircraft power as a function of a number of generators providing power and as a function of a health status of a load to be included in said load set.
US08829697B2
An energy storage apparatus for storing energy transmitted by a power transmission line includes an elastically deformable component and an actuator-generator. The actuator-generator is coupled to the elastically deformable component such that electrical actuation of the actuator-generator generates tension in the elastically deformable component. The actuator-generator is further coupled to the elastically deformable component such that mechanical actuation of the actuator-generator via a release of tension in the elastically deformable component causes a generation of electrical energy by the actuator-generator.
US08829687B2
A semiconductor package is provided, which includes: a semiconductor substrate having opposite first and second surfaces; an adhesive layer formed on the first surface of the semiconductor substrate; at least a semiconductor chip disposed on the adhesive layer; an encapsulant formed on the adhesive layer for encapsulating the semiconductor chip; and a plurality of conductive posts penetrating the first and second surfaces of the semiconductor substrate and the adhesive layer and electrically connected to the semiconductor chip, thereby effectively reducing the fabrication cost, shortening the fabrication time and improving the product reliability.
US08829685B2
Provided are: a circuit device demonstrating an improved connection reliability while being mounted; and a method for manufacturing the same. The circuit device of the present invention includes: an island; leads arranged around the island, each lead having a lower surface and a side surface exposed to the outside; and a semiconductor element mounted on the island and electrically connected to the leads through thin metal wires. Furthermore, the exposed end portion of the lead is formed to spread toward the outside. By forming the lead in this manner, the area where the lead comes into contact with a brazing filler material is increased, thus improving the connection strength therebetween.
US08829675B2
A system for repairing pillar bumps includes a pillar bump repair device that is adapted to form a plurality of strain-relieving notches in a pillar bump that is positioned above a metallization system of a semiconductor chip. The system further includes a pillar bump support device that is adapted to substantially support the pillar bump while the pillar bump repair device is forming each of the plurality of strain-relieving notches.
US08829666B2
Semiconductor packages and methods of forming a semiconductor package are disclosed. The method includes providing at least one die having first and second surfaces. The second surface of the die includes a plurality of conductive pads. A support carrier is provided and the at least one die is attached to the support carrier. The first surface of the at least one die is facing the support carrier. A cap having first and second surfaces is formed to encapsulate the at least one die. The second surface of the cap is disposed at a different plane than the second surface of the die.
US08829664B2
A three-dimensional semiconductor device, comprising: a first module layer having a plurality of circuit blocks; and a second module layer positioned substantially above the first module layer, including a plurality of configuration circuits; and a third module layer positioned substantially above the second module layer, including a plurality of circuit blocks; wherein, the configuration circuits in the second module control a portion of the circuit blocks in the first and third module layers.
US08829660B2
A resin-sealed semiconductor device includes a semiconductor chip including a silicon substrate; a die pad on which the semiconductor chip is secured via a solder layer; a sealing resin layer sealing the semiconductor chip; and lead terminals connected electrically with the semiconductor chip. One end portion of the lead terminals is covered by the sealing resin layer. The die pad and the lead terminals are formed of copper and a copper alloy, and the die pad is formed with a thickness larger than a thickness of the lead terminals, which is a thickness of 0.25 mm or more.
US08829657B2
A semiconductor substrate includes a substrate body divided into device regions and a peripheral region outside the device region, and having one surface, another surface substantially facing away from the one surface, trenches defined in the device regions under the one surface and inner surfaces which are formed due to defining of the trenches; active regions formed in the trenches; and a gettering layer formed between the inner surfaces of the substrate body and the active regions.
US08829648B2
A semiconductor package includes a semiconductor element, a capacitor, and a package substrate. The capacitor supplies transient current to the semiconductor element. The semiconductor element and the capacitor are mounted on the package substrate. The semiconductor element includes an integrated circuit, a first connecting part, and a second connecting part. The capacitor includes a third connecting part and a fourth connecting part. The package substrate includes a first metallic layer, a second metallic layer, and a dielectric layer. The first metallic layer includes a first conductive region, a second conductive region, a third conductive region, and a fourth conductive region. The first conductive region is connected via a fifth connecting part to the second metallic layer. The third conductive region is connected via a sixth connecting part to the second metallic layer. The second and fourth conductive regions are connected to each other inside the first metallic layer.
US08829641B2
In one general aspect, a method of forming a field effect transistor can include forming a well region in a semiconductor region of a first conductivity type where the well region is of a second conductivity type and has an upper surface and a lower surface. The method can include forming a gate trench extending into the semiconductor region to a depth below a depth of the lower surface of the well region, and forming a stripe trench extending through the well region and into the semiconductor region to a depth below the depth of the gate trench. The method can also include forming a contiguous source region of the first conductivity type in the well region where the source region being in contact with the gate trench and in contact with the stripe trench.
US08829632B2
A semiconductor package includes a wiring board, an electronic component mounted on the wiring board, and an enclosing frame arranged on an upper surface of the electronic component. The enclosing frame includes a basal portion, which has the form of a closed frame and extends along the upper surface of the electronic component, and an adhesion portion, which is wider than the basal portion and is arranged on the upper surface of the basal portion. A cap is adhered to an upper surface of the adhesion portion. A molding resin contacts a lower surface of the adhesion portion and seals the electronic component and the wiring board that are exposed from the enclosing frame.
US08829631B2
There is disclosed a memory element including a memory layer that has a magnetization perpendicular to a film face and a magnetization direction thereof varies corresponding to information; a magnetization-fixed layer that has a magnetization that is perpendicular to the film face and becomes a reference for the information stored in the memory layer; and an insulating layer that is provided between the memory layer and the magnetization-fixed layer and is formed of a non-magnetic layer, wherein an electron that is spin-polarized is injected in a lamination direction of a layered structure having the memory layer, the insulating layer, and the magnetization-fixed layer, and thereby the magnetization direction varies and a recording of information is performed with respect to the memory layer, and a magnitude of an effective diamagnetic field which the memory layer receives is smaller than a saturated magnetization amount of the memory layer.
US08829630B2
[Subject] To provide a pressure sensor capable of implementing cost reduction and miniaturization.[Solving Means] A pressure sensor 1 includes a silicon substrate 2 provided therein with a reference pressure chamber 8, a diaphragm 10, consisting of part of the silicon substrate 2, formed on a surface layer portion of the silicon substrate 2 to partition a reference pressure chamber 8, and an etching stop layer 9 formed on a lower surface of the diaphragm 10 facing the reference pressure chamber 8. A through-hole 11 communicating with the reference pressure chamber 8 is formed on the diaphragm 10, and a filler 13 is arranged in the through-hole 11.
US08829628B2
A MEMS package structure, including a substrate, an interconnecting structure, an upper metallic layer, a deposition element and a packaging element is provided. The interconnecting structure is disposed on the substrate. The MEMS structure is disposed on the substrate and within a first cavity. The upper metallic layer is disposed above the MEMS structure and the interconnecting structure, so as to form a second cavity located between the upper metallic layer and the interconnecting structure and communicates with the first cavity. The upper metallic layer has at least a first opening located above the interconnecting structure and at least a second opening located above the MEMS structure. Area of the first opening is greater than that of the second opening. The deposition element is disposed above the upper metallic layer to seal the second opening. The packaging element is disposed above the upper metallic layer to seal the first opening.
US08829613B1
A semiconductor device is formed with a stepped field plate over at least three sequential regions in which a total dielectric thickness under the stepped field plate is at least 10 percent thicker in each region compared to the preceding region. The total dielectric thickness in each region is uniform. The stepped field plate is formed over at least two dielectric layers, of which at least all but one dielectric layer is patterned so that at least a portion of a patterned dielectric layer is removed in one or more regions of the stepped field plate.
US08829608B2
According to one embodiment, a semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of the first conductivity type, a third semiconductor layer of a second conductivity type, a fourth semiconductor layer of the second conductivity type, a fifth semiconductor layer of the first conductivity type, a control electrode, a first main electrode, a second main electrode, and a sixth semiconductor layer of the first conductivity type. The second semiconductor layer and the third semiconductor layer are alternately provided on the first semiconductor layer in a direction substantially parallel to a major surface of the first semiconductor layer. The fourth semiconductor layer is provided on the second semiconductor layer and the third semiconductor layer. The fifth semiconductor layer is selectively provided on a surface of the fourth semiconductor layer. The control electrode is provided in a trench via an insulating film. The trench penetrates through the fourth semiconductor layer from a surface of the fifth semiconductor layer and is in contact with the second semiconductor layer. The first main electrode is connected to the first semiconductor layer. The second main electrode is connected to the fourth semiconductor layer and the fifth semiconductor layer. The sixth semiconductor layer is provided between the fourth semiconductor layer and the second semiconductor layer. An impurity concentration of the sixth semiconductor layer is higher than an impurity concentration of the second semiconductor layer.
US08829605B2
A MOSFET includes: a substrate made of silicon carbide and having a first trench and a second trench formed therein, the first trench having an opening at the main surface side, the second trench having an opening at the main surface side and being shallower than the first trench; a gate insulating film; a gate electrode; and a source electrode disposed on and in contact with a wall surface of the second trench. The substrate includes a source region, a body region, and a drift region. The first trench is formed to extend through the source region and the body region and reach the drift region. The second trench is formed to extend through the source region and reach the body region.
US08829602B2
The invention includes a semiconductor structure having a gateline lattice surrounding vertical source/drain regions. In some aspects, the source/drain regions can be provided in pairs, with one of the source/drain regions of each pair extending to a digit line and the other extending to a memory storage device, such as a capacitor. The source/drain regions extending to the digit line can have the same composition as the source/drain regions extending to the memory storage devices, or can have different compositions from the source/drain regions extending to the memory storage devices. The invention also includes methods of forming semiconductor structures. In exemplary methods, a lattice comprising a first material is provided to surround repeating regions of a second material. At least some of the first material is then replaced with a gateline structure, and at least some of the second material is replaced with vertical source/drain regions.
US08829600B2
Provided is a power semiconductor device including a semiconductor substrate, in which a current flows in a thickness direction of the semiconductor substrate. The semiconductor substrate includes a resistance control structure configured so that a resistance to the current becomes higher in a central portion of the semiconductor substrate than a peripheral portion of the semiconductor substrate.
US08829596B2
The nonvolatile memory device includes a semiconductor layer including trenches formed in a first direction, isolation layers filling the trenches, and active regions divided by the isolation layer, first insulating patterns formed on the semiconductor substrate in a second direction crossing the first direction, charge storage layer patterns formed over the respective active regions between the first insulating patterns, and second insulating patterns formed on the isolation layers between the charge storage layer patterns.
US08829585B2
In a vertical dynamic memory cell, monocrystalline semiconductor material of improved quality is provided for the channel of an access transistor by lateral epitaxial growth over an insulator material (which complements the capacitor dielectric in completely surrounding the storage node except at a contact connection structure, preferably of metal, from the access transistor to the storage node electrode) and etching away a region of the lateral epitaxial growth including a location where crystal lattice dislocations are most likely to occur; both of which features serve to reduce or avoid leakage of charge from the storage node. An isolation structure can be provided in the etched region such that space is provided for connections to various portions of a memory cell array.
US08829582B2
A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
US08829580B2
According to one embodiment, a magnetoresistive memory includes first and second contact plugs in a first interlayer insulating film, a lower electrode on the first interlayer insulating film, a magnetoresistive effect element on the lower electrode, and an upper electrode on the magnetoresistive effect element. The lower electrode has a tapered cross-sectional shape in which a dimension of a bottom surface of the lower electrode is longer than a dimension of an upper surface of the lower electrode, one end of the lower electrode is in contact with an upper surface of the first contact plug. The magnetoresistive effect element is provided at a position shifted from a position immediately above the first contact plug in a direction parallel to a surface of the semiconductor substrate.
US08829573B2
A semiconductor device with minimized current flow differences and method of fabricating same are disclosed. The method includes forming a semiconductor stack including a plurality of layers that include a first layer having a first conductivity type and a second layer having a first conductivity type, in which the second layer is on top of the first layer, forming a plurality of mesas in the semiconductor layer stack, and forming a plurality of gates in the semiconductor layer stack having a second conductivity type and situated partially at a periphery of the mesas, in which the plurality of gates are formed to minimize current flow differences between a current flowing from the first layer to the plurality of mesas at a first applied gate bias and a current flowing from the first layer to the plurality of mesas at a second applied gate bias when voltage is applied to the semiconductor device.
US08829569B2
A semiconductor apparatus includes a first semiconductor layer formed on a substrate, a second semiconductor layer formed on the first semiconductor layer, a gate recess formed by removing at least a portion of the second semiconductor layer, an insulation film formed on the gate recess and the second semiconductor layer, a gate electrode formed on the gate recess via the insulation film, source and drain electrodes formed on one of the first and the second semiconductor layers, and a fluorine containing region formed in at least one of a part of the first semiconductor layer corresponding to a region in which the gate recess is formed and a part of the second semiconductor layer corresponding to the region in which the gate recess is formed.
US08829564B2
A semiconductor device includes a semiconductor substrate and a MOS transistor. The semiconductor substrate has the first main surface and the second main surface facing each other. The MOS transistor includes a gate electrode (5a) formed on the first main surface side, an emitter electrode (11) formed on the first main surface side, and a collector electrode (12) formed in contact with the second main surface. An element generates an electric field in a channel by a voltage applied to the gate electrode (5a), and controls the current between the emitter electrode (11) and the collector electrode (12) by the electric field in the channel. The spike density in the interface between the semiconductor substrate and the collector electrode (12) is not less than 0 and not more than 3×108 unit/cm2. Consequently, a semiconductor device suitable for parallel operation is provided.
US08829556B2
A large area, flexible, OLED assembly has improved thermal management by providing a metal cathode of increased thickness of at least 500 nm. A thermal heat sink trace may be used as alternative or in conjunction with the increased thickness cathode where the trace leads from a central region of the OLED toward a perimeter region, or by other backsheet thermal management designs. External heat sinking, for example to a plate, fixture, etc. may be additionally used or in conjunction with the increased thickness cathode and/or backsheet design to provide further thermal management.
US08829555B2
A semiconductor light emission element (1) includes: a substrate (110); multi-layered semiconductor layers (100) including a light emission layer (150) and layered on the substrate (110); a transparent electrode (170) including an indium oxide and layered on the multi-layered semiconductor layers (100); a first junction layer (190) including tantalum as a valve action metal and layered on the transparent electrode (170) in such a manner that a side of the first junction layer (190) being in contact with the transparent electrode (170) is a tantalum nitride layer or a tantalum oxide layer; and a first bonding pad electrode (200) layered on the first junction layer (190) and used for electrical connection with outside. This improves a bonding property of the transparent electrode or the semiconductor layer with the connection electrode and reliability of the electrodes.
US08829545B2
A group III nitride semiconductor light-emitting device comprises an n-type gallium nitride-based semiconductor layer, a first p-type AlXGa1-XN (0≦X<1) layer, an active layer including an InGaN layer, a second p-type AlYGa1-YN (0≦Y≦X<1) layer, a third p-type AlZGa1-XN layer (0≦Z≦Y≦X<1), and a p-electrode in contact with the third p-type AlZGa1-ZN layer. The active layer is provided between the n-type gallium nitride-based semiconductor layer and the first p-type AlXGa1-XN layer. The second p-type AlYGa1-YN (0≦Y≦X<1) layer is provided on the first p-type AlXGa1-XN layer. The p-type dopant concentration of the second p-type AlYGa1-YN layer is greater than the p-type dopant concentration of the first p-type AlXGa1-XN layer. The third p-type AlZGa1-ZN layer (0≦Z≦Y≦X<1) is provided on the second p-type AlYGa1-YN layer. The p-type dopant concentration of the second p-type AlYGa1-YN layer is greater than a p-type dopant concentration of the third p-type AlZGa1-ZN layer.
US08829542B2
An organic light emitting diode device including an anode, a cathode facing the anode, and a light emitting member between the anode and cathode, wherein the light emitting member includes at least two light emitting units displaying the same or different color as one another, and a charge-generation layer between the at least two light emitting units, the charge-generation layer including a first charge-generation layer and a second charge-generation layer that each include an undoped material, and wherein the first charge-generation layer has an ionization energy that is about the same as or less than an electron affinity of the second charge-generation layer.
US08829537B2
Disclosed is an integrated apparatus including an isolative substrate, a plurality of driver chips provided on a side of the isolative substrate, a power supply provided on the side of the isolative substrate and electrically connected to the driver chips, and LED chips provided on another side of the isolative substrate and electrically connected to the driver chips. Thus, the driver chips, the power supply and the LED chips are integrated on the isolative substrate. The production is easy. The integrated apparatus is not vulnerable to surges and lightning strikes. Electromagnetic interferences are reduced. Heat radiation of the integrated apparatus is excellent so that the LED chips are protected from thermal effect.
US08829535B2
A silicon carbide semiconductor device includes an insulation film, and a silicon carbide layer having a surface covered with the insulation film. The surface includes a first region. The first region has a first plane orientation at least partially. The first plane orientation is any of a (0-33-8) plane, (30-3-8) plane, (-330-8) plane, (03-3-8) plane, (-303-8) plane, and (3-30-8) plane.
US08829534B2
Provided is a power semiconductor device including: a power semiconductor element; a metal block as a first metal block that is connected to the power semiconductor element through an upper surface electrode pattern as a first upper surface electrode pattern selectively formed on an upper surface of the power semiconductor element; and a mold resin filled so as to cover the power semiconductor element and the metal block, wherein an upper surface of the metal block is exposed from a surface of the mold resin.
US08829533B2
The present invention relates to a semiconductor device (1) in silicon carbide, with a highly doped substrate region (11) and a drift region (12). The present invention specifically teaches that an additional layer (13) is positioned between the highly doped substrate region (11) and the drift region (12), the additional layer (13) thus providing a wide safe operating area at subsequently high voltages and current densities.
US08829532B2
Semiconductor layer structure and a method for producing a structure are provided, including a substrate made of semiconductor material, on which a layer made of a second semiconductor material is situated, furthermore a region (3) enriched with impurity atoms, which region is situated either in layer (2) or at a specific depth below the interface between layer (2) and substrate (1), additionally a layer (4) within the region (3) enriched with impurity atoms, which layer comprises cavities produced by ion implantation, furthermore at least one epitaxial layer (6) applied to layer (2) and also a defect region (5) comprising dislocations and stacking faults within the layer (4) comprising cavities, the at least one epitaxial layer (6) being largely crack-free, and a residual strain of the at least one epitaxial layer (6) being less than or equal to 1 GPa.
US08829530B2
A crystal producing apparatus includes a crystal forming unit and a crystal growing unit. The crystal forming unit forms a first gallium nitride (GaN) crystal by supplying nitride gas into melt mixture containing metal sodium (Na) and metal gallium (Ga). The first GaN crystal is sliced and polished to form GaN wafers. The crystal growing unit grows a second GaN crystal on a substrate formed by using a GaN wafer, by the hydride vapor phase epitaxy method, thus producing a bulked GaN crystal.
US08829528B2
A step for forming an island-shaped semiconductor layer of a semiconductor device used in a display device is omitted in order to manufacture the semiconductor device with high productivity and low cost. The semiconductor device is manufactured through four photolithography processes: four steps for forming a gate electrode, for forming a source electrode and a drain electrode, for forming a contact hole, and for forming a pixel electrode. In the step for forming the contact hole, a groove portion in which a semiconductor layer is removed is formed, whereby formation of a parasitic transistor is prevented. An oxide semiconductor is used as a material of the semiconductor layer in which a channel is formed, and an oxide semiconductor having a higher insulating property than the semiconductor layer is provided over the semiconductor layer.
US08829506B2
An optoelectronic device including a first electrode arranged on a substrate, a second electrode that includes a first surface facing the first electrode, and a semiconductor material layer that is in electric contact with the first and second electrodes. The second electrode includes a side wall that is adjacent to the first surface and is covered with the semiconductor material layer by the insertion of a self-assembled monolayer.
US08829505B2
The present invention is provided an organic light emitting diode structure and display device therefor, wherein an organic light emitting diode comprises a transparent substrate; and multi-rowed and multi-columned light emitting pixel units formed on the transparent substrate, which comprising a plurality of light emitting pixels. The organic light emitting diode also comprises ultraviolet light emitting pixels for emitting ultraviolet light. The present invention is caused the OLED display device to carry out colorful display and also can use to be ultraviolet light.
US08829502B2
A condensed polycyclic compound which emits green light and which has a high chemical stability and an organic light emitting element including the same are provided. A condensed polycyclic compound represented by the general formula [1] or [2] described in claim 1 is provided. In the formula [1] and [2], R1 to R10 are independently selected from the group consisting of a hydrogen atom, a straight or branched alkyl group having 1 to 4 carbon atoms, and a substituted or unsubstituted aromatic hydrocarbon group having 6 to 22 carbon atoms.
US08829501B2
The invention relates to an organic light emitting device having an electrode, a counter electrode, at least one light emitting region that includes a stack of organic layers between the electrode and the counter electrode, which stack of organic layers is provided between a metal substrate and a transparent encapsulation, a current supply layer, electrically connected to the electrode or the counter-electrode, the current supply layer being partially provided overlapping an electric insulating layer provided in direct contact with the metal substrate, and at least one electrical feedthrough through the metal substrate and through the electric insulating layer, which electrical feedthrough provides an electrical connection to the current supply layer and is electrically isolated from the metal substrate.
US08829499B2
A semiconductor element including an organic semiconductor layer and a layer disposed on the upper surface of the organic semiconductor layer, wherein the outline of the layer is inside the outline of the organic semiconductor layer.
US08829486B2
A light-emitting device comprises a substrate, and a light-emitting structure formed on the substrate. The light-emitting structure comprises a first active layer emitting the light with a first wavelength, and a second active layer emitting the light with a second wavelength. The light-emitting structure is formed by the first active layer and the second active layer stacked alternately.
US08829478B2
An EUV light source is disclosed herein which may comprise a droplet generator producing a stream of target material droplets, a first optical gain medium amplifying light on a first beam path without a seed laser providing a seed laser output to the first beam path, a second optical gain medium amplifying light on a second beam path without a seed laser providing a seed laser output to the second beam path, and a beam combiner combining light from the first beam path and the second beam path for interaction with a target material droplet to produce EUV light emitting plasma.
US08829471B1
Techniques for spatial spectral holography include a doped crystal comprising Thulium doped into a host crystal of Yttrium Lutetium Aluminum Garnet wherein a concentration of Thulium atoms is less than 3 atomic percent. Techniques further include an apparatus with a source for optical electromagnetic radiation and a cryocooler configured to maintain an operating temperature in a range from about 3 Kelvin to about 6 Kelvin. The cryocooler includes a first optical window. The apparatus also includes a doped crystal comprising Thulium doped into a host crystal of Yttrium Lutetium Aluminum Garnet disposed inside the cryocooler in a position to be illuminated by incident optical electromagnetic radiation derived from the source. The apparatus also includes a detector configured to detect optical electromagnetic radiation emitted from the doped crystal. Techniques include a method for using at least one of the above doped crystals.
US08829467B2
An IMS or other analytical instrument has a corona discharge needle (20) to ionize sample gases or vapours. A gate (3) is opened or closed to admit or prevent entry of the ions produced by the corona discharge to a drift chamber (4). The operation of the corona discharge needle (20) and the gate (3) are controlled such that the gate is open during at least two discharges, to admit faster ions produced by the most recent discharge together with slower ions produced by an earlier discharge.
US08829466B2
A scanning power source that outputs the excitation current for a scanning electromagnet and an irradiation control apparatus that controls the scanning power source; the irradiation control apparatus is provided with a scanning electromagnet command value learning generator that evaluates the result of a run-through, which is a series of irradiation operations through a command value for the excitation current outputted from the scanning power source, that updates the command value for the excitation current, when the result of the evaluation does not satisfy a predetermined condition, so as to perform the run-through, and that outputs to the scanning power source the command value for the excitation current such that its evaluation result has satisfied the predetermined condition.
US08829458B2
In a weathering chamber, a UV radiation device is arranged and at least one sample can be arranged in a sample plane spaced apart from the UV radiation device. The UV radiation device has a plurality of UV light emitting diodes (UV LEDs) containing two or more classes of UV LEDs having different emission bands. The emission bands are chosen in such a way that a spectral distribution with which a specific spectral UV characteristic is approximated can be obtained in the sample plane.
US08829452B1
An avalanche photodiode (APD) electro-magnetic radiation (EMR) detector for visible to near infrared wavelengths is described. The detector includes an EMR absorption region, a voltage biasing element, and a charge multiplication region. The EMR absorption region includes a substantially regular array of silver or aluminum nanoparticles embedded in a matrix material. The voltage biasing element is configured to apply a bias voltage to the matrix material such that electrical current is directly generated in the EMR absorption region based on a cooperative plasmon effect in the detector material when electro-magnetic radiation in the visible to near infrared wavelength range is incident upon the detector material, where the dominant mechanism for decay in the cooperative plasmon effect is non-radiative. The charge multiplication region is arranged relative to the EMR absorption region to avalanche multiply the electrical current generated in the EMR absorption region.
US08829446B2
Among other things, one or more tiles for an indirect-conversation radiation detector array are provided herein. Respective tiles comprise a detector sub-assembly and an electronic sub-assembly, which are operably coupled together, yet selectively removable, via a connection interface. When an electronic sub-assembly portion of a tile, which comprises a signal acquisition system (e.g., an integrated circuit, such as an application specific integrated circuit (ASIC)), functions improperly, the electronic sub-assembly portion of the tile may be selectively removed for repair/replacement without removing and/or replacing the detector sub-assembly (e.g., which may be much more costly to replace). Similarly, when the detector sub-assembly portion of a tile functions improperly, the detector sub-assembly portion of the tile may be selectively removed for repair/replacement without removing and/or replacing the electronic sub-assembly portion of the tile (e.g., although some manipulation of the properly functioning sub-assembly may occur).
US08829439B2
A method and system for detecting targets comprising at least one first receiver for receiving radiation, the radiation comprises beams of radiation spaced horizontally; at least one second receiver for receiving radiation, the radiation comprises beams of radiation spaced horizontally and vertically such that the beams of radiation received by the second receiver travel through different predetermined heights from the horizontal plane; at least one processor for receiving data from the first and second receivers, the at least one receiver operating to locate a target passing in the vicinity of the first and second receivers and determine the height of the target based upon the recordation of certain of the beams at a predetermined heights relative to the horizontal plane and the width of a target based upon the horizontal spacing of the beams.
US08829437B2
Disclosed are methods and apparatus for determining an unknown degree of amorphicity in a bulk-solidifying amorphous alloy. A specimen can be prepared from the alloy, irradiated with passive radiation, imaged to provide a thermal image, and the image analyzed to assess the differences in emissivities in the image. The degree of amorphicity can be determined based on the differences in thermal emissivities.
US08829436B2
A method of fabricating a phase plate, for use in a transmission electron microscope, with simple process steps is offered. The method includes a step (S100) of forming a first layer on a substrate, a step (S102) of patterning the first layer to form through-holes extending through the first layer, a step (S104) of etching the surface of the substrate opposite to the surface on which the first layer is formed to form an opening which is in communication with the through-holes and which exposes the first layer, and a step (S106) of forming a second layer on the first layer.
US08829434B2
A mass spectrometer is provided including: a collision chamber of generating fragment ions by superimposingly applying an AC voltage and a first DC voltage between linear multipolar electrodes, and accelerating the fragment ions by applying a second DC voltage between a front stage electrode and a later stage electrode; a mass spectrometer unit of carrying out mass separation of the fragment ions; and a control unit of determining the second DC voltage based on the mass-to-charge ratios such that the rates of the fragment ions in the collision chamber become equal regardless of the mass-to-charge ratios. Herein, the control unit increases the second DC voltage as the mass-to-charge ratios selected by the mass spectrometer unit become larger. This allows the mass window to be wider even when a DC electric field is generated in order to solve a crosstalk drawback, in the movement direction of the molecular ions.
US08829431B2
A coupled nanomanipulation and nanospray mass spectrometry (NMS) system for single cell, single organelle, and ultra-trace molecular analysis is disclosed herein. The system primarily comprises a bio-workstation coupled to a NMS. The bio-workstation primarily comprises of a nanomanipulator stage with a plurality of nano-positioners attached to a cabinet with a piezo voltage source and a pressure injector. The present invention further describes a fingerprint lift method that when coupled with the system disclosed herein can be used for retrieval and analysis of trace amounts of drug and explosive residues. The system described herein has been used in the areas of trace and document analysis within the forensic field, trace fiber analysis, and electrostatic lifts for illicit drugs, as well as document and painting analysis.
US08829425B1
A portable or handheld mass spectrometer making use of a cryogenic pumping, ion pumping or getter pumping system. The portable mass spectrometer contains a cryopump, ion pump, or getter pump, and operates in conjunction with a fixed docking station. The docking station contains a backing pump to bring the mass spectrometer manifold down to operating pressure prior to being placed into portable operation using the cryopump, ion pump, or getter pump. The individual pumps may be operated either separately or simultaneously. This configuration permits the portable mass spectrometer module to be small, lightweight and rugged, and yet be easily and quickly recharged and regenerated for use in either a field or laboratory environment.
US08829423B2
System and methods for a vacuum cell apparatus for an atomic sensor are provided. In at least one embodiment, the apparatus comprises a cell wall encircling an enclosed volume, the cell wall having a first open end and a second open end opposite from the first open end and a first panel over the first open end of the cell wall and having a first surface, the first surface facing the enclosed volume and having a first set of diffractive optics therein. Further, the apparatus comprises a second panel over the second open end of the cell wall and having a second surface, the second surface facing the enclosed volume and having a second set of diffractive optics therein; wherein the first set of diffractive optics and the second of diffractive optics are configured to reflect at least one optical beam within the enclosed volume along a predetermined optical path.
US08829420B2
An encoder system and method are provided, that is designed to improve 2D encoder systems and methods in areas such as accuracy, compactness, stability, resolution, and/or light efficiency. Moreover, the system and method of this invention provides a new concept in a retroreflector that while particularly useful in applicants' system and method, is believed to have more general utility in optical imaging systems and methods.
US08829416B2
The invention relates to a passive mechanical athermalization device, comprising: a barrel (1) that is made of a first material having a first thermal expansion coefficient (11) and that has a longitudinal axis (AA), said barrel comprising at least one first portion (11) and at least one second portion (12), the device being characterized in that it comprises: at least three beams (7) made of the first material, each of the beams (7) circumferentially connecting the first portion (11) and the second portion (12) relative to the longitudinal axis (AA); at least three bars (8) made of a second material having a second thermal expansion coefficient (12) that is different from the first thermal expansion coefficient, circumferentially distributed around the barrel (1) relative to the longitudinal axis (AA), each bar (8) axially connecting the first portion (11) and the second portion (12) relative to the longitudinal axis (AA) such that the thermal expansion of the barrel (1) results in a deformation of the beams (7) and of the bars (8) along the longitudinal axis (AA). The invention also relates to an optical system comprising such a passive athermalization device.
US08829406B2
Optical apparatus includes a device package, with a radiation source contained in the package and configured to emit a beam of coherent radiation. A diffractive optical element (DOE) is mounted in the package so as to receive and diffract the radiation from the radiation source into a predefined pattern comprising multiple diffraction orders. An optical detector is positioned in the package so as to receive and sense an intensity of a selected diffraction order of the DOE.
US08829404B1
Embodiments of a multi-mode seeker are provided for use in conjunction with a predetermined laser designator. In one embodiment, the multi-mode seeker includes a focal plane array and a bi-modal processing system. The focal plane array includes a detector array and a Read-Out Integrated Circuit (ROIC) operatively coupled to the detector array. The bi-modal processing system is operatively coupled to ROIC and is switchable between: (i) an imaging mode wherein the bi-modal processing system generates video data as a function of signals received from ROIC indicative of irradiance across the detector array, and (ii) a semi-active laser guidance mode wherein the bi-modal processing system generates line-of-sight data as a function of signals received from ROIC indicative of laser pulses detected by the detector array and qualified as corresponding to the predetermined laser designator.
US08829402B2
The present invention relates to an autofocus aperture stop (5, 6) in a triangulating autofocusing device (21) for a microscope (40), wherein the autofocus aperture stop (5, 6) comprises at least one diaphragm opening (3, 4) with which a measuring beam pencil (34) used for the autofocusing and running in the direction of the optical axis (18) of the autofocusing device (21) can be limited in its cross section, wherein the diaphragm opening (3, 4) of the autofocus aperture stop (5, 6) is arranged in a decentred position at a spacing from the optical axis (18) of the autofocusing device (21), wherein a decentred autofocus measuring beam (36) can be generated by the diaphragm opening (3, 4) in one half of the cross section (17) of the measuring beam pencil (34).
US08829398B2
In a coffee maker (1) having a boiler (6) and heating means (62) for heating a content of the boiler (6), safety measures are taken to prevent breakdown of the coffee maker (1) in the case in which the heating means (62) are activated while the boiler (6) is empty. The coffee maker (1) comprises a controller (10) having a memory (15) in which a flag indicating a filled state of the boiler (6) can be raised, which controller (10) is programmed to activate the heating means (62) to supply reduced heating power if the memory (15) does not contain the flag. A situation in which the boiler (6) gets overheated, even if the heating means (62) are shut off after having been operated, is prevented thereby.
US08829389B2
A method of manufacturing a helical bar concave from a flat, rolled laser cut arrangement that provides a net helical concave functionality. Laser cutting a flat metal sheet to form helical cutouts defining a percent open area having a helical geometry in combination with configurable rub bars mounted in a helical fashion results in a configurable helical bar concave in which the number or aggressiveness of the threshing surface on the inside radius of the grate may be changed and/or the rub bars may be moved to the outside of the grate to change the percent open area and hence the separation characteristics of the concave.
US08829385B2
A nozzle, retaining cap, or shield for a plasma arc torch that includes a surface defining a conductive contact portion for exchanging heat with an adjacent torch component. The adjacent torch component can be a retaining cap, electrode or nozzle. The surface of the nozzle, retaining cap, or shield can also at least partially define a cooling channel having a curvilinear surface. A sealant portion can be positioned between the conductive contact portion and the cooling channel. The sealant portion can form or create a fluid barrier between the cooling channel and the conductive portion.
US08829380B2
The disclosure relates to an arc chute for a medium voltage circuit breaker having a housing, at least one stack of a plurality of substantially parallel metal plates arranged in the housing, the at least one stack defining a first axis in parallel to a stacking direction; an arc space arranged in the housing, wherein the arc space is adapted to allow an arc to expand therein; and at least one arc quenching plate disposed in the housing, wherein the arc guiding plate has at least one surface which has a surface plane extending in parallel to the first axis. Further, the present disclosure relates to a circuit breaker having a switching unit with a first switch contact and a second switch contact, movable between a first position, wherein the first switch contact contacts the second switch contact, and a second position, wherein the first switch contact is separated from the second switch contact, and an arc chute. Additionally, the disclosure relates to a polymer plate selected of a group containing a flame retardant polymer, a flame retardant polymer having a flame retardant filler, and a polymer having a flame retardant filler as an arc quenching plate.
US08829372B1
An air break electrical switch includes a first electrical terminal and a second electrical terminal supported apart from the first electrical terminal. The switch further includes a blade support configured to be electrically insulatively supported apart from the second electrical terminal. A blade is pivotally supported by the blade support, and the blade is pivotable from an open contact position to a closed contact position and vice versa. The switch further includes an indicator connected to the blade. At least a portion of the indicator is fixed to the blade so as to rotate with the blade and display a first color when the blade is in the open contact position and obscure the first color when the blade is in the closed contact position.
US08829369B2
In order to take maximum advantage of the modularity provided by a multipole circuit breaker (100) with double enclosure, a new architecture is proposed. A part of the outer case (48) of the switchgear apparatus is formed directly when assembly of the breaking device (600) is performed by juxtaposition and securing between single-pole breaking units (10), spacers (46) and side walls (50). It is thus possible to use the spacers (46) for various functionalities, and in particular to modify the external aspect of the switchgear apparatus (100) or the nature of the trip device in delayed manner.
US08829363B2
A receptacle for supporting a transponder on a support structure includes a housing having a first housing portion securable to the transponder and a second housing portion securable to the support structure. The first housing portion is pivotally secured to the second housing portion. The first housing portion and second housing portion include a shield for attenuating the transmission of electromagnetic signals. The first housing portion has a first position wherein the first housing portion and second housing portion form a chamber for enclosing the transponder and restricting the transmission of electromagnetic signals from the chamber. The first housing portion has a second position wherein the first housing portion and the transponder are displaced from the second housing portion thereby opening the chamber and exposing the transponder to permit the transmission of electromagnetic signals to and from the transponder.
US08829360B2
The connector for PV cells is a strip of electrically conductive material which has a flat cross-section with two broad sides and with two narrow sides which each connect opposite edges of the broad sides. At least one broad side has a corrugated structure running in longitudinal direction of the strip and is pre-tinned in an area the length of which is somewhat less than the length of the edge of a PV cell. To produce the pre-tinned strips, in a first step a metal foil is guided through a roll gap of a rolling mill in which at least one work roll has a surface with a corrugated structure with the result that a corrugated structure which has crests or peaks and troughs is embossed into at least one side of the metal foil, in a second step soldering tin in the form of solder preforms is applied to the side of the metal foil with the embossed corrugated structure, wherein the soldering flux necessary for pre-tinning has been applied in advance to the solder preforms or the metal foil, in a third step the solder preforms are connected to the metal foil and melted on and in a fourth step the pre-tinned metal foil with the embossed corrugated structure is separated into parallel ribbons. The solder preforms are sufficiently thick for the corrugated structure to be at least full after the solder preforms have been melted on.
US08829357B2
A wiring board includes a core substrate having an opening portion and a through hole adjacent to the opening portion, a capacitor positioned in the opening portion, and a through-hole conductor formed in the through hole of the core substrate and having a conductor filling the through hole. The core substrate has a first surface and a second surface on the opposite side of the first surface, the opening portion of the core substrate penetrates from the first surface to the second surface, the through-hole conductor has a first conductive portion and a second conductive portion connected to the first conductive portion in the core substrate, the first conductive portion of the through-hole conductor becomes narrower from the first surface toward the second surface, and the second conductive portion of the through-hole conductor becomes narrower from the second surface toward the first surface.
US08829356B2
A packaging substrate includes: a dielectric layer unit having top and bottom surfaces; a positioning pad embedded in the bottom surface of the dielectric layer unit; at least a passive element having a plurality of electrode pads disposed on upper and lower surfaces thereof, the passive element being embedded in the dielectric layer unit and corresponding to the positioning pad; a first circuit layer disposed on the top surface of the dielectric layer unit, the first circuit layer having first conductive vias electrically connected to the electrode pads disposed on the upper surface of the passive element; and a second circuit layer disposed on the bottom surface of the dielectric layer unit, the second circuit layer having second conductive vias electrically connected to the electrode pads disposed on the lower surface of the passive element. Through the embedding of the passive element, the overall structure may have a reduced height.
US08829348B2
A communications cable includes a plurality of longitudinally extending pairs of conducting elements, a low profile male connector secured to a first end of the cable, and a low profile female connector secured to an opposite second end of the cable. The plurality of pairs of conducting elements terminate at the male connector in a first orientation and terminate at the female connector in a second orientation. The first and second orientations are such that each respective conducting element can be connected to itself when the male and female connectors are matingly engaged with each other.
US08829343B1
A seal kit with torque limiting spacers for use with a field communication cable connector having a housing containing a cable contact circuit board includes a plurality of seals and spacers. Inner and outer seals are provided. The inner seal is sized for reception in an inner channel of the cable connector housing. The outer seal, having a plurality of compressible ribs, is sized for reception in an outer channel in the cable connector housing. The spacers provide space between the cable contact circuit board and the cable connector housing. Each spacer has a bore for receiving a fastener therethrough. The spacers are sized in accordance with the size of the cable connector unit and the cable connected to the cable connector unit.
US08829334B2
A thermo-photovoltaic power generator for efficiently converting thermal energy into electric energy including a selective thermal emitter for receiving thermal energy and emitting thermal radiation with black body emissivity over a range of wavelengths, low-bandgap photovoltaic cells responsive to thermal radiation at wavelengths within a particular band of said range of wavelengths and operative to convert such thermal radiation to electric energy, and a band pass filter disposed between the thermal emitter and the photovoltaic cells for transmitting thermal radiation from the emitter at wavelengths within the particular band to the photovoltaic cells, and for reflecting thermal radiation from the emitter at wavelengths outside the particular band back to the emitter.
US08829333B2
A highly reliable solar cell module and method for manufacturing same are disclosed. The solar cell module is provided with first and second solar cell elements, each of which has a semiconductor substrate and an output taking out electrode; a circuit film which electrically connects together the first solar cell element and the second solar cell element; and a sealing material disposed between the circuit film and the second surface of the first and the second solar cell elements. The sealing material has a through hole, and the circuit film has: a base sheet having a protruding section which protrudes toward the second surface of the solar cell element; and a wiring conductor which electrically connects the output taking out electrode of the first solar cell element and the output taking out electrode of the second solar cell element.
US08829332B1
A photovoltaic device includes lateral P-I-N light-sensitive diodes disposed on a silicon island formed by a P− epitaxial layer and surrounded by trenches that provide lateral isolation, where the island is separated from the substrate by a porous silicon region that is grown under the island and isolates the lower portions of the photovoltaic device from the highly doped substrate. The trenches extend through the P− epitaxial material into the P+ substrate to facilitate self-limiting porous silicon formation at the bottom of the island, and also to suppress electron-hole recombination. A protective layer (e.g., SiN) is formed on the trench walls to further restrict porous silicon formation to the bottom of the island. Black silicon on the trench walls enhances light capture. The photovoltaic devices form low-cost embedded photovoltaic arrays on CMOS IC devices, or are separated to produce low-cost, HV solar arrays for solar energy sources, e.g. for solar concentrators.
US08829330B2
In an example, a solar energy system includes multiple PV modules, multiple reflectors, and a racking assembly. Each of the reflectors is positioned opposite a corresponding one of the PV modules. The racking assembly mechanically interconnects the PV modules and the reflectors to form an interconnected system. The racking assembly defines gaps within the racking assembly and between adjacent PV modules and reflectors. The interconnected system includes multiple contact points associated with the gaps. The gaps and contact points configure the interconnected system to accommodate surface unevenness of an installation surface up to a predetermined surface unevenness.
US08829329B2
An integrated photovoltaic cell and battery device, a method of manufacturing the same and a photovoltaic power system incorporating the integrated photovoltaic cell and battery device. The integrated photovoltaic cell and battery device includes a photovoltaic cell, a battery, and interconnects providing three-dimensional integration of the photovoltaic cell and the battery into an integrated device for capturing and storing solar energy. Also provided is a design structure readable by a machine to simulate, design, or manufacture the above integrated photovoltaic cell and battery device.
US08829326B2
The invention relates to a thermoelectric-based power generation system designed to be clamped onto the outer wall of a steam pipe or other heating pipe. The system can include a number of assemblies mounted on the sides of a pipe. Each assembly can include a hot block, an array of thermoelectric modules, and a cold block system. The hot block can create a thermal channel to the hot plates of the modules. The cold block can include a heat pipe onto which fins are attached.
US08829323B2
Systems and methods are provided for enhancing interaction with a music simulation program. A controller interacts with the music simulation program in conjunction with a motion sensor to enable selection from among various operating modes, each representing a musical instrument or role. Distinct gestures and/or movements are detected by the motion sensor and serve to switch among the various modes during the course of the duration of a song or video without interrupting the progression of the song/video or gameplay.
US08829312B1
A novel maize variety designated PH1VTJ and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH1VTJ with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH1VTJ through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH1VTJ or a locus conversion of PH1VTJ with another maize variety.
US08829307B1
A novel maize variety designated X18C101 and seed, plants and plant parts thereof, produced by crossing Pioneer Hi-Bred International, Inc. proprietary inbred maize varieties. Methods for producing a maize plant that comprises crossing hybrid maize variety X18C101 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X18C101 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X18C101, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X18C101. This invention further relates to methods for producing maize varieties derived from maize variety X18C101.
US08829300B2
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH096048. The invention thus relates to the plants, seeds and tissue cultures of the variety CH096048, and to methods for producing a corn plant produced by crossing a corn plant of variety CH096048 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH096048.
US08829296B2
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH481662. The invention thus relates to the plants, seeds and tissue cultures of the variety CH481662, and to methods for producing a corn plant produced by crossing a corn plant of variety CH481662 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH481662.
US08829283B1
A novel canola variety designated NS5870MC and seed, plants and plant parts thereof. Methods for producing a canola plant that comprise crossing canola variety NS5870MC with another canola plant. Methods for producing a canola plant containing in its genetic material one or more traits introgressed into NS5870MC through backcross conversion and/or transformation, and to the canola seed, plant and plant part produced thereby. Hybrid canola seed, plant or plant part produced by crossing the canola variety NS5870MC or a locus conversion of NS5870MC with another canola variety.
US08829282B2
A canola line designated SCV425044 is disclosed. The invention relates to the seeds of canola line SCV425044, to the plants of canola SCV425044, to plant parts of canola line SCV425044 and to methods for producing a canola plant produced by crossing canola line SCV425044 with itself or with another canola line. The invention also relates to methods for producing a canola plant containing in its genetic material one or more transgenes and to the transgenic canola plants and plant parts produced by those methods. This invention also relates to canola lines or breeding lines and plant parts derived from canola line SCV425044, to methods for producing other canola lines, lines or plant parts derived from canola line SCV425044 and to the canola plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid canola seeds, plants and plant parts produced by crossing the line SCV425044 with another canola line.
US08829277B2
The present invention relates to methods of manipulating senescence in plants. The invention also relates to vectors useful in such methods, transformed plants with modified senescence characteristics and plant cells, seeds and other parts of such plants.
US08829272B2
The present invention relates generally to methods and transcriptional control sequences suitable for effecting expression of a nucleotide sequence of interest in a plant. More particularly, the present invention relates to methods and transcriptional control sequences suitable for directing specific or preferential expression of a nucleotide sequence of interest in a plant seed. Of particular interest as a transcriptional control sequence in this invention is the promoter PR602 (SEQ ID NO: 1) found in the 5′-untranslated region of the rice END1-like gene and isolated from a rice panicle library.
US08829271B1
A novel maize variety designated PH1M8A and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH1M8A with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH1M8A through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH1M8A or a locus conversion of PH1M8A with another maize variety.
US08829264B2
The present invention provides methods for attenuating gene expression in a cell, especially in a mammalian cell, using gene-targeted double stranded RNA (dsRNA), such as a hairpin RNA. The dsRNA contains a nucleotide sequence that hybridizes under physiologic conditions of the cell to the nucleotide sequence of at least a portion of the gene to be inhibited (the “target” gene).
US08829262B2
A method of gasification using a downdraft gasifier having a plurality of vertically positioned tubes to create a pyrolysis zone, an oxidation zone beneath the pyrolysis zone and a reduction zone beneath the oxidation zone. The shape of the tubes eliminates the need for a restriction (hearth) in the gasifier, which limits the maximum achievable throughput. A rotating and vertically adjustable grate is located beneath, but not attached to, the reduction zone of the gasifier.
US08829258B2
Integrating a biomass pyrolysis and upgrading process into a fluid catalytic cracking unit. The process uses conventional FCC feed and a mixture of a solvent and biomass to produce upgraded fuel products. A slurry stream composed of solid biomass particles and a solvent is fed into an FCC riser through a slurry pump to achieve biomass pyrolysis and in situ pyrolysis oil upgrading. The catalytic cracking of the conventional petroleum feed also occurs in the riser.
US08829256B2
Process and systems for converting lower molecular weight alkanes to higher molecular weight hydrocarbons that include fractionation of brominated hydrocarbons, wherein the brominated hydrocarbons are formed by reaction of the lower molecular weight alkanes with bromine.
US08829255B1
Provided are (Z,Z,E)-1-chloro-6,10,12-pentadecatriene that can be synthesized without an oxidation reaction and a method for preparing (Z,Z,E)-7,11,13-hexadecatrienal by using (Z,Z,E)-1-chloro-6,10,12-pentadecatriene while not using an oxidation reaction. More specifically, provided is a method for preparing (Z,Z,E)-7,11,13-hexadecatrienal including a step of reacting a Grignard reagent into which (Z,Z,E)-1-chloro-6,10,12-pentadecatriene is converted with ethyl orthoformate to obtain (Z,Z,E)-1,1-diethoxy-7,11,13-hexadecatriene, and a step of treating the (Z,Z,E)-1,1-diethoxy-7,11,13-hexadecatriene with an acid to obtain (Z,Z,E)-7,11,13-hexadecatrienal.
US08829246B2
The subject of the present invention is a process for preparing acrolein by dehydration of glycerol in the presence of a catalyst system based on iron phosphorous oxide containing, in addition, one or more elements chosen from alkali metals, alkaline-earth metals, AI, Si, B, Co, Cr, Ni, V, Zn, Zr, Sn, Sb, Ag, Cu, Nb, Mo, Y, Mn, Pt, Rh and the rare earths La, Ce, Sm. The process is preferably carried out in the gas phase in the presence of oxygen starting from aqueous solutions of glycerol. The process according to the invention makes it possible of obtain high acrolein selectivities.
US08829241B2
The invention describes a process for the purification of iodinated aryl compounds where the purification is performed by continuous crystallization of a crude product in a solvent with addition of anti-solvent. The continuous crystallization process is performed in one or more crystallizers at a temperature up to the boiling point of the content of the crystallizer.
US08829240B2
Process for the production of urea from ammonia and carbon dioxide in a urea plant containing a high-pressure synthesis section comprising at least one reactor section, a stripper and a condenser wherein all the high-pressure equipment is placed in a low position, wherein the height of the high-pressure section is less than 35 m from ground level and at least one of the reactor sections comprises means for the separate distribution of ammonia in the bottom of the reactor section.
US08829239B2
An object of the present invention relates to a porous metal organic framework comprising at least one first organic compound and ions of at least one metal, with the skeleton of the framework being formed at least partly by the at least one first organic compound coordinating at least partly in a bidentate fashion to at least two ions of the at least one metal, where the at least one metal is lithium and the at least one first compound is derived from formic acid or acetic acid. Also provided a process for preparing the porous metal organic framework and its use for gas storage or separation.
US08829236B2
The present invention relates to a method for preparing a halogenoacetyl fluoride and the derivatives thereof. The inventive method for preparing a halogenoacetyl fluoride acid is characterized in that said method includes: a step of preparing a halogenoacetyl halide by photo-oxidation of a halogenoethylene compound in conditions such that the transformation rate of the halogenoethylene compound into halogenoacetyl halide is no higher than 80%, producing a reaction mixture essentially including halogenoacetyl halide and the excess halogenoethylene compound; a step of partial fluorination of the mixture obtained by reacting the latter with hydrofluoric acid suitable for obtaining a mixture of halogenoacetyl fluoride and the excess halogenoethylene compound; a step of separating the halogenoacetyl fluoride and the excess halogenoethylene compound. The invention can be used, specifically, for preparing the trichloroacetyl fluoride used as an intermediate species in the production of trifluoroacetic acid.
US08829228B2
There are provided a novel carboxylate compound useful as a blending perfume raw material and having a brisk pine-like odor and a method of producing the same and a perfume composition containing such a carboxylate compound.The carboxylate compound of the invention is represented by a general formula (1): wherein R is an alkyl group having two to four carbon atoms.
US08829225B2
An improvement in the production of 1,1-disubstituted ethylenes is attained by contacting a 1,1-disubstituted ethylene with alumina and separating the alumina to obtain a 1,1-disubstituted ethylene with a good combination of cost, purity, shelf life and cure rate.
US08829223B2
The invention relates to a novel way to synthesize acrylonitrile from a renewable raw material and more particularly relates to a method for producing acrylonitrile by the ammoxidation of glycerol in gaseous phase. The method can be implemented in a single step, or the glycerol can be previously submitted to a dehydration step. The acrylonitrile thus obtained meets the requirements of green chemistry.
US08829222B2
A process for the manufacture of dialkyl phosphites is disclosed. In detail, dialkyl phosphites are prepared starting from P4O6, or partially hydrated species thereof cumulatively P—O, by reacting specific molar ratios of alcohol and P—O, containing from 1 to 6 P—O—P bonds in the molecule, in the presence of trialkylphospite (TAP) to thus yield high purity and high yield of dialkyl phosphites. The P—O reactant is preferably represented by liquid P4O6.
US08829217B2
Methods of forming single source precursors (SSPs) include forming intermediate products having the empirical formula ½{L2N(μ-X)2M′X2}2, and reacting MER with the intermediate products to form SSPs of the formula L2N(μ-ER)2M′(ER)2, wherein L is a Lewis base, M is a Group IA atom, N is a Group IB atom, M′ is a Group IIIB atom, each E is a Group VIB atom, each X is a Group VIIA atom or a nitrate group, and each R group is an alkyl, aryl, vinyl, (per)fluoro alkyl, (per)fluoro aryl, silane, or carbamato group. Methods of forming polymeric or copolymeric SSPs include reacting at least one of HE1R1E1H and MER with one or more substances having the empirical formula L2N(μ-ER)2M′(ER)2 or L2N(μ-X)2M′(X)2 to form a polymeric or copolymeric SSP. New SSPs and intermediate products are formed by such methods.
US08829209B2
Cycloalkylcarbonylamino acid ester derivatives, which are raw material intermediates for a novel cycloalkane carboxamide derivative having an action that selectively inhibits cathepsin K, and a production process thereof, are provided.A cycloalkylcarbonylamino acid ester derivative represented by formula (I), or a pharmaceutically acceptable salt thereof: (wherein, R1 and R2 represent alkyl groups, alkenyl groups, alkynyl groups, aromatic hydrocarbon groups, heterocyclic groups, etc., R8 represents an alkyl group having 1 to 6 carbon atoms, and ring A represents a cyclic alkylidene group having 5, 6 or 7 carbon atoms).
US08829207B2
Cyclic acetals can be produced in a reactive distillation apparatus by combining a polyhydroxyl compound and an aldehyde. High concentrations of cyclic acetals are removed as liquid products from the column while water is removed as an overhead vapor stream.
US08829203B2
Indirubin derivatives of formula (I) wherein R represents -(A)n- R1 or —CO—N(R2,R3) with •A being C1-C5 alkylene group, optionally substituted by one or several A1 radical, A1 being an halogen Br, OH, OR4 or NH2, R4 being C1-C5 alkyl; —R1 being halogen, OH, N(R2, R3); R2 and R3, identical or different, being C1-C5 alkyl, optionally substituted by A1 such as above defined, or R2 and R3 are part of a cycle with 5 or 6 elements optionally comprising another heteroatom such as O or N; •n=1−5. It also relates to the biological application thereof.
US08829200B2
The present invention relates to compounds of formula (IA) and (IB): and pharmaceutically acceptable salts thereof, wherein R1-R7 are as defined herein. The invention also relates to pharmaceutical compositions comprising these compounds, methods of using these compounds in the treatment of various diseases and disorders, processes for preparing these compounds and intermediates useful in these processes.
US08829196B2
The present invention relates to compositions and methods that modulate at least one TRP family member. Specifically, the present invention relates to novel TRPA1 antagonists and their use in the treatment of pain such as chronic inflammatory and neuropathic pain. Compounds that can modulate one or more TRPA1 functions are useful in many aspects including, but not limited to, maintaining calcium homeostasis; maintaining sodium homeostasis; modulating intracellular calcium levels; modulating membrane polarization (membrane potential); modulating cation levels; and/or treating or preventing diseases, disorders, or conditions associated with calcium homeostasis, sodium homeostasis, calcium or sodium dyshomeostasis, or membrane polarization/hyperpolarization (including hypo and hyperexcitability), and/or treating or preventing diseases, disorders, or conditions associated with regulation or misregulation of TRPA1 expression or function. The present invention further relates to methods and compositions that antagonize both a function of TRPA1 and a function of one or more additional TRP channels.
US08829194B2
The present invention relates to novel crystalline forms of (4-{4-[5-(6-Trifluoromethyl-pyridin-3-ylamino)-pyridin-2-yl]-phenyl}-cyclohexyl)-acetic acid, sodium and their use in the treatment or prevention of a condition or a disorder associated with DGAT1 activity in animals, particularly humans. It also relates to processes for making such novel crystalline forms.
US08829190B2
The present invention relates to a compound according to formula (I), wherein X and Y are either C and N or N and C; Z is CH2, CH2—CH2, CH2—NH, or NH; R1 is halogen, or R1 is alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, cycloalkyl, alkoxycarbonyl, aryl, all of which are optionally substituted; R2 is hydrogen, or R2 is alkyl, cycloalkyl, alkoxy, heterocycloalkyl, aryl, heteroaryl, alkoxycarbonyl, aminocarbonyl, amino, all of which are optionally substituted; A is aryl, cycloalkyl, cycloalkenyl, heteroaryl, heterocycloalkyl or heterocycloalkenyl, all of which are optionally substituted; and pharmaceutically acceptable salts, hydrates, or solvates hereof. The invention further relates to said compounds for use in therapy, to pharmaceutical compositions comprising said compounds, to methods of treating diseases, e.g. dermal diseases, with said compounds, and to the use of said compounds in the manufacture of medicaments, in particular for the treatment of dermal diseases.
US08829188B2
The invention relates to fluoroalkylfluorophosphorane adducts and the use thereof for masking OH groups in organic compounds.
US08829184B2
A compound of formula (I): which is substantially free of any of the corresponding compound of formula (IB): methods of making such compounds, and the further transformation of such compounds.
US08829180B2
Provided a method of producing a purified hyaluronic acid type which comprises adding a water-soluble organic medium to a solution which comprises a hyaluronic acid type having an average molecular weight of 400 to 100,000 and has a pH of 3 or less to obtain a suspension, and adjusting a pH of the suspension in a range of 3.5 to 8 to precipitate a purified hyaluronic acid type.
US08829171B2
Artificial transposon sequences having code tags and target nucleic acids containing such sequences. Methods for making artificial transposons and for using their properties to analyze target nucleic acids.
US08829170B2
The present invention relates generally to constructs and in particular genetic constructs comprising polynucleotide sequences capable of release in covalently closed, circular form from a larger nucleotide sequence such as, but not limited to, a genome of a eukaryotic cell. Preferably, once released, a polynucleotide sequence is reconstituted in a form which permits expression of the polynucleotide sequence. In one embodiment, the reconstituted polynucleotide sequence comprises a coding sequence with all or part of an extraneous nucleotide such as, but not limited to, an intronic sequence or other splice signal inserted therein. Expression and in particular transcription of the coding sequence involves splicing out the extraneous sequence. The release and circularization is generally in response to a stimulus such as a protein-mediated stimulus. More particularly, the protein is a viral or prokaryotic or eukaryotic derived protein or developmentally and/or tissue specific regulated protein.
US08829162B2
The invention relates to an in vitro method for diagnosing prostate cancer and to antibodies and fragments thereof directed against CK2-α and their use for the diagnosis and prognosis of prostate cancer.
US08829158B2
Human proIslet Peptides (HIP) and HIP analogs and derivatives thereof, derived from or homologous in sequence to the human REG3A protein, chromosome 2p12, are able to induce islet neogenesis from endogenous pancreatic progenitor cells. Human proIslet Peptides are used either alone or in combination with other pharmaceuticals in the treatment of type 1 and type 2 diabetes and other pathologies related to aberrant glucose, carbohydrate, and/or lipid metabolism, insulin resistance, overweight, obesity, polycystic ovarian syndrome, eating disorders and the metabolic syndrome.