-
公开(公告)号:CN118230262A
公开(公告)日:2024-06-21
申请号:CN202410056729.4
申请日:2024-01-15
Applicant: 海南大学
IPC: G06V20/54 , G06V20/17 , G06V10/25 , G06V10/40 , G06V10/80 , G06V10/82 , G06V10/764 , G06V10/766 , G06T7/73 , G06T7/246 , G06N3/045 , G06N3/0495 , G06N3/0455 , G06N3/0442
Abstract: 本发明涉及一种基于空海自主协同系统的船舶异常行为红外监测方法,无人船通过雷达检测到活动船只,释放无人机监测船只;无人机将采集的船舶图像输入到目标检测模块中,识别目标类别,并根据红外相机参数和无人机GPS位置信息,计算目标GPS位置,将图像中多目标GPS位置的质心点作为航点,实现多目标跟踪;根据相邻帧图像目标构建关联度矩阵,使用基于关联度最大权匹配的匈牙利算法找出最优匹配,得到目标轨迹;依据轨迹提取目标轨迹特征,通过自编码器重构特征信息,计算原始特征和重构特征的误差,判别船舶行为异常情况。与现有技术相比,本发明解决了船舶关闭AIS系统后难以监控的问题,提升了夜间船舶监控能力,降低人工监测强度。
-
公开(公告)号:CN116945178A
公开(公告)日:2023-10-27
申请号:CN202310989730.8
申请日:2023-08-08
Applicant: 海南大学
IPC: B25J9/16
Abstract: 本发明涉及一种三轮全向移动机械臂加速度层的神经动力学姿态调整方法,方法步骤包括:获取三轮全向移动机械臂的状态参数,将状态参数输入预先构建的加速度层姿态调整模型中;求解加速度层姿态调整模型;根据加速度层姿态调整模型计算结果同时调整移动平台和机械臂到达期望的姿态;加速度层姿态调整模型基于在加速度层上描述的性能指标结合移动平台加速度层运动学方程以及三轮全向移动机械臂的物理极限建立;在加速度层上描述的性能指标根据零化移动机械臂当前姿态与期望姿态的误差的思想采用神经动力学设计公式推导得到。本发明既能在加速度层上,也能在速度层上,高效地实现三轮全向移动机械臂的姿态自动调整,便于执行在不同姿态下的操作任务。
-
公开(公告)号:CN117901103A
公开(公告)日:2024-04-19
申请号:CN202410100465.8
申请日:2024-01-24
Applicant: 海南大学
Abstract: 本发明涉及一种面向垃圾处理场景的抓取机器人控制方法、系统、介质,方法包括:实时采集图像并利用预设的通信协议发送至服务端进行逐帧推理,接收包括物品种类和坐标的实时推理结果;基于所述实时推理结果,利用本地的传感器移动至要处理的目标物品并抓取所述目标物品;在抓取到所述目标物品后,基于所述实时推理结果,利用本地的传感器移动至放置所述目标物品的目标位置处并放置目标物。与现有技术相比,本发明具有改善推理的即时性、机器人成本低等优点。
-
公开(公告)号:CN117111594A
公开(公告)日:2023-11-24
申请号:CN202310530731.6
申请日:2023-05-12
Applicant: 海南大学
IPC: G05D1/02
Abstract: 本发明涉及一种无人水面艇的自适应航迹控制方法,包括:针对复杂环境下无人水面艇运行数据具有时变性和高度非线性的特点,基于Peephole LSTM方法,通过引入常量误差传输子来学习无人艇航行数据的非线性特征,挖掘数据间的时序规律,形成无人艇的状态空间。基于深度强化学习DDPG算法对无人水面艇进行实时自适应航迹控制,通过构建双层网络架构,使用最大化全局的奖励来调整优化网络的动作策略。采用经验回放技术,将每一时刻的样本存储于重播缓冲区中,通过非均匀小批次抽样,降低样本间的相关性。通过迭代计算损失函数,来定期更新目标网络的参数。与现有技术相比,本发明具有提高了无人水面艇的航行效率和安全性等优点。
-
公开(公告)号:CN116945179A
公开(公告)日:2023-10-27
申请号:CN202310989753.9
申请日:2023-08-08
Applicant: 海南大学
IPC: B25J9/16
Abstract: 本发明涉及一种基于梯度下降和指数衰减的轮式移动机械臂姿态调整方法,方法步骤包括:获取轮式移动机械臂姿的状态参数,将状态参数输入预先构建的加速度层姿态调整模型中;求解加速度层姿态调整模型;根据求解结果实时驱动移动平台的驱动轮和机械臂的关节,使轮式移动机械臂从当前姿态调整到期望的姿态;其中加速度层姿态调整模型基于采用梯度下降公式和指数衰减公式推导二次型性能指标结合移动平台的运动学方程以及轮式移动机械臂的物理极限建立。本发明在加速度层上实现了移动平台和机械臂在不同姿态之间的同时自动调整,避免轮式移动机械臂在执行不同的操作任务时需多次测量移动平台和机械臂姿态的繁琐过程。
-
公开(公告)号:CN116945192A
公开(公告)日:2023-10-27
申请号:CN202311170380.9
申请日:2023-09-11
Applicant: 海南大学
IPC: B25J9/16
Abstract: 本发明涉及一种三轮全向移动机械臂自运动规划方法,方法包括:S1、采用梯度下降公式,推导机械臂从不同初始状态调整到期望状态的速度层指标;S2、引入末端定位误差及其积分的反馈,并结合移动平台的运动学方程和S1的速度层指标,设计以伪逆形式描述的自运动规划方案;S3、获取机械臂的初始状态,将初始状态代入自运动规划方案进行迭代计算,得到自运动规划的驱动轮旋转角速度和关节速度;S4、将自运动规划的驱动轮旋转角速度和关节速度发送至三轮全向移动机械臂的下位机控制器,驱动三轮全向移动机械臂和移动平台达到期望状态。与现有技术相比,本发明具有完成不同状态之间的自动、快速、准确调整等优点。
-
公开(公告)号:CN116229720A
公开(公告)日:2023-06-06
申请号:CN202310236891.X
申请日:2023-03-10
Applicant: 海南大学
IPC: G08G1/01 , G06F18/23213 , G06F30/20 , G06Q50/18 , G06F111/08
Abstract: 本发明涉及一种智能车路系统的交通事故判别方法,包括如下步骤:S1:基于智能车路系统的道路线形,实时获取交通流信息,交通流信息包括交通流的流量和密度,以密度为x轴,流量为y轴,建立二维坐标系,基于交通流信息建立宏观交通流基本图模型;S2:针对交通流基本图模型中的散点,通过k‑means方法随机选取k个初始质心向量对散点进行聚类,基于DDPG算法对参数k进行参数寻优,对交通流基本图模型中各散点进行簇划分,得到最优输出簇;S3:判断交通流基本图模型中的散点在最优输出簇中所处的簇,进而判别当前时刻下的智能车路系统是否发生交通事故。与现有技术相比,本发明能够动态且精准地判别IVIS的突发性交通事故,进而保障道路交通的通行能力。
-
公开(公告)号:CN118123834A
公开(公告)日:2024-06-04
申请号:CN202410409611.5
申请日:2024-04-07
Applicant: 海南大学
IPC: B25J9/16
Abstract: 本发明涉及一种运动空间受限的三轮全向移动机械臂重复运动规划方法及系统,其中方法包括以下步骤:考虑移动平台的位姿极限和机械臂的关节角度极限,建立三轮全向移动机械臂在运动空间受限情况下的运动学方程;将运动学方程转化为联合非线性方程组,确定三轮全向移动机械臂速度层运动规划方案的通用形式;构建可实现重复运动的速度层判据;基于速度层运动规划方案的通用形式和速度层判据,构建基于伪逆描述的重复运动规划方案;下位机控制器根据重复运动规划方案的计算结果驱动移动平台的三个全向轮和机械臂的关节完成给定的末端操作任务。与现有技术相比,本发明能够使得运动空间受限的移动平台和机械臂在完成任务后同时回到各自的初始状态。
-
公开(公告)号:CN118092487A
公开(公告)日:2024-05-28
申请号:CN202311772605.8
申请日:2023-12-21
Applicant: 海南大学
IPC: G05D1/49 , G05D1/46 , G05D101/10 , G05D109/20
Abstract: 本发明涉及一种基于毫米波雷达和视觉协同的艇载无人机降落方法和系统。系统包括无人机和停机平台。无人机,包括无人机基本结构及其精准定位模块、飞行控制模块、机载微型处理器和相应的传感器部件,其中精准定位模块用于获取停机平台的精确位置,包括卫星定位子模块、毫米波雷达定位子模块与视觉定位子模块;停机平台,包括停机平台、精准定位模块所需的标识码与固定无人机的自动推杆。相比于现有的其他发明技术,本发明提出的无人机自主降落系统具有全天候、高精度、大范围、低成本、抗干扰的明显优势。
-
公开(公告)号:CN117111594B
公开(公告)日:2024-04-12
申请号:CN202310530731.6
申请日:2023-05-12
Applicant: 海南大学
IPC: G05D1/43 , G05D109/30
Abstract: 本发明涉及一种无人水面艇的自适应航迹控制方法,包括:针对复杂环境下无人水面艇运行数据具有时变性和高度非线性的特点,基于Peephole LSTM方法,通过引入常量误差传输子来学习无人艇航行数据的非线性特征,挖掘数据间的时序规律,形成无人艇的状态空间。基于深度强化学习DDPG算法对无人水面艇进行实时自适应航迹控制,通过构建双层网络架构,使用最大化全局的奖励来调整优化网络的动作策略。采用经验回放技术,将每一时刻的样本存储于重播缓冲区中,通过非均匀小批次抽样,降低样本间的相关性。通过迭代计算损失函数,来定期更新目标网络的参数。与现有技术相比,本发明具有提高了无人水面艇的航行效率和安全性等优点。
-
-
-
-
-
-
-
-
-