-
公开(公告)号:CN1547262A
公开(公告)日:2004-11-17
申请号:CN200310107262.X
申请日:2003-12-09
Applicant: 南开大学
IPC: H01L31/18
CPC classification number: Y02P70/521
Abstract: 本发明涉及无镉铜铟镓硒薄膜太阳能电池缓冲层薄膜的制备方法,在铜铟镓硒光学吸收层薄膜的表面上镀覆金属锌薄膜,然后将镀覆有金属锌薄膜的电池基板表面用光辐照加热,其衬底背面用接触式热源或光辐照方式加热,固态硒源或/和硫源用接触式热源和光辐照协同方式来加热,硒源或/和硫源的温度控制在160~280℃,硒或硫蒸气与锌薄膜之间用光辐射来催化它们的合成反应,锌薄膜的硒化或/和硫化处理温度控制在180~420℃,用时2~10分钟将锌薄膜转化成n-型ZnSe或ZnS半导体薄膜材料,制成无镉铜铟镓硒薄膜太阳能电池中的缓冲层薄膜。本发明方法可在铜铟镓金属预制层后硒化方法制备CIGS薄膜电池的生产线内进行连续化的生产操作。
-
公开(公告)号:CN1547239A
公开(公告)日:2004-11-17
申请号:CN200310107202.8
申请日:2003-12-05
Applicant: 南开大学
CPC classification number: Y02P70/521
Abstract: 本发明涉及铜铟镓的硒或硫化物半导体薄膜材料的制备方法,是在铜铟镓硒或/和硫光学吸收层薄膜的制备工艺中,先用真空磁控溅射、加热蒸发或化学水浴电沉积法在钠钙玻璃Mo衬底上分步沉积化学式配比量的Cu、In、Ga金属预制层,再在热处理真空室内进行光硒化或/和硫化反应,其特征在于:对沉积有铜铟镓金属预制层的电池基板双面同时加热,电池基板的背部一面用接触式热源加热,镀覆金属预制层的基板一面用光辐照加热,在其快速、均匀地升温到400~560℃区间时,对硒源或硫源进行接触式热源和光辐照的协同加热,促使铜铟镓金属预制层转变成化合物半导体光电薄膜材料。本发明方法克服了600℃高温硒化或硫化造成的玻璃软化,适合于工业化生产。
-
公开(公告)号:CN113540287B
公开(公告)日:2023-02-21
申请号:CN202110730391.2
申请日:2021-06-29
Applicant: 南开大学
IPC: H01L31/18 , H01L31/0352 , H01L31/0749
Abstract: 本发明提供了一种富铜铜基薄膜太阳电池器件及其制备方法,其中,该制备方法包括:在衬底上形成富铜铜基薄膜太阳能电池器件的光吸收层;在光吸收层上形成类有序缺陷化合物层;在类有序缺陷化合物层上形成缓冲层;在缓冲层上形成窗口层;在窗口层上形成顶电极,并露出部分窗口层,得到富铜铜基薄膜太阳电池器件;其中,类有序缺陷化合物层为在光吸收层上通过共蒸发碱金属、铟、硒元素制备而成。
-
公开(公告)号:CN113972301A
公开(公告)日:2022-01-25
申请号:CN202111225067.1
申请日:2021-10-20
Applicant: 南开大学
IPC: H01L31/18 , C23C14/06 , C23C14/08 , C23C14/14 , C23C14/24 , C23C14/30 , C23C14/34 , H01L31/0216 , H01L31/0224
Abstract: 本发明提供了一种铜基薄膜太阳电池及其制备方法,该制备方法包括:在衬底上形成金属电极层;在金属电极层上形成光吸收层,其中,光吸收层包括依次层叠形成的银碱共掺化合物预置层和铜基化合物半导体层,银碱共掺化合物预置层形成于金属电极层上;在光吸收层上形成碱金属化合物钝化层;在碱金属化合物钝化层上形成缓冲层;在缓冲层上形成窗口层;在窗口层上形成顶电极层。基于此方法,在低温制备中够充分完成薄膜内结晶生长,有效提升器件性能。
-
公开(公告)号:CN110611001B
公开(公告)日:2021-09-28
申请号:CN201910906720.7
申请日:2019-09-24
Applicant: 南开大学
IPC: H01L31/0224 , H01L31/18
Abstract: 本发明公开一种磷酸盐制备太阳电池的方法,包括以下步骤:在衬底上制备Mo金属电极;将Mo金属电极在浓度为5mmol/L的磷酸盐溶液中进行浸泡,然后以500℃~600℃退火30min,获得P掺杂的Mo电极;在P掺杂的Mo电极上形成金属预制层;对金属预制层进行后硒化处理或后硫化处理形成吸收层;在吸收层上形成缓冲层;在缓冲层上形成本征氧化锌层和掺杂氧化锌层;以及形成顶电极。本发明利用磷酸盐溶液对金属Mo电极进行浸泡并在500℃~600℃退火处理,有效提高了薄膜太阳电池的短路电流、开路电压和器件效率。
-
公开(公告)号:CN108977860B
公开(公告)日:2020-03-31
申请号:CN201810627346.2
申请日:2018-06-19
Applicant: 南开大学
Abstract: 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法,该方法通过在Mo衬底上制备出Cu纳米颗粒,使Cu纳米颗粒作为形核点辅助沉积Cu薄膜,从而在Mo衬底表面沉积出表面平整且晶粒细小的Cu薄膜。该方法一方面可修饰Cu薄膜的表面形貌,提升Cu薄膜的薄膜质量;另一方面能够显著降低在Mo衬底上电沉积Cu薄膜对Mo衬底表面形貌的严格要求,并降低对电镀溶液成分和沉积参数的要求。该方法简单易行、操作简便,大大降低了通过电沉积方法在Mo衬底上沉积高质量Cu薄膜的沉积难度。
-
公开(公告)号:CN110611002A
公开(公告)日:2019-12-24
申请号:CN201910907568.4
申请日:2019-09-24
Applicant: 南开大学
IPC: H01L31/0224 , H01L31/18
Abstract: 本发明公开一种具有P掺杂的Mo电极的太阳电池制备方法,包括以下步骤:在衬底上制备Mo金属电极;将所述Mo金属电极在浓度级别为mmol/L的磷酸根溶液中进行浸泡,然后以550℃退火30min,获得P掺杂的Mo电极;在所述P掺杂的Mo电极上形成金属预制层;对所述金属预制层进行后硒化处理或后硫化处理形成吸收层;在所述吸收层上形成缓冲层;在所述缓冲层上形成本征氧化锌层和掺杂氧化锌层;以及形成顶电极。
-
公开(公告)号:CN110106477A
公开(公告)日:2019-08-09
申请号:CN201910432869.6
申请日:2019-05-22
Applicant: 南开大学
IPC: C23C14/26
Abstract: 本公开提供一种石墨芯结构的高温裂解金属蒸发源,包括:坩埚,用于盛放镀膜材料;石墨芯裂解器,其设置于所述坩埚内的中部,且位于所述镀膜材料的上方,其上设置有连通所述镀膜材料与所述坩埚外部环境的通道;加热单元,其环绕所述坩埚的侧壁设置,用于加热所述坩埚中的所述镀膜材料,使其蒸发并穿过所述石墨芯裂解器上的通道;隔热层,其环绕所述加热单元设置,用于隔绝所述加热单元与外界的能量交换。本公开提供的石墨芯结构的高温裂解金属蒸发源使用石墨芯裂解器。使用石墨芯,解决了坩埚口部镀膜材料的冷凝问题,避免了冷凝的颗粒被带到薄膜内部,提升了沉积薄膜的质量。
-
公开(公告)号:CN108977860A
公开(公告)日:2018-12-11
申请号:CN201810627346.2
申请日:2018-06-19
Applicant: 南开大学
Abstract: 一种通过电沉积法在Mo衬底上沉积高质量Cu薄膜的方法,该方法通过在Mo衬底上制备出Cu纳米颗粒,使Cu纳米颗粒作为形核点辅助沉积Cu薄膜,从而在Mo衬底表面沉积出表面平整且晶粒细小的Cu薄膜。该方法一方面可修饰Cu薄膜的表面形貌,提升Cu薄膜的薄膜质量;另一方面能够显著降低在Mo衬底上电沉积Cu薄膜对Mo衬底表面形貌的严格要求,并降低对电镀溶液成分和沉积参数的要求。该方法简单易行、操作简便,大大降低了通过电沉积方法在Mo衬底上沉积高质量Cu薄膜的沉积难度。
-
公开(公告)号:CN100401433C
公开(公告)日:2008-07-09
申请号:CN200610013054.7
申请日:2006-01-16
Applicant: 南开大学
Abstract: 本发明涉及多晶Fe3O4薄膜材料及其制备方法。它是在基片上形成多晶Fe3O4薄膜,Fe3O4晶粒粒径大小为13~19纳米,厚度200-500nm,该Fe3O4薄膜中的多晶颗粒随机取向,没有织构,室温磁电阻数值在10%~12%。本发明的多晶Fe3O4薄膜的制备方法是采用直流磁控溅射技术,在氩气和氧气的混合气氛中,通过控制氧气流量和铁靶的溅射功率沉积的。所用基片材料为玻璃、石英、聚酯、单晶硅、单晶砷化镓等,溅射时基片不加热。本方法制备温度低、制备工艺简单、适用于多种基片材料。
-
-
-
-
-
-
-
-
-