铜铟镓的硒或硫化物半导体薄膜材料的制备方法

    公开(公告)号:CN1257560C

    公开(公告)日:2006-05-24

    申请号:CN200310107202.8

    申请日:2003-12-05

    Applicant: 南开大学

    CPC classification number: Y02P70/521

    Abstract: 本发明涉及铜铟镓的硒或硫化物半导体薄膜材料的制备方法,是在铜铟镓硒或/和硫光学吸收层薄膜的制备工艺中,先用真空磁控溅射、加热蒸发或化学水浴电沉积法在钠钙玻璃Mo衬底上分步沉积化学式配比量的Cu、In、Ga金属预制层,再在热处理真空室内进行光硒化或/和硫化反应,其特征在于:对沉积有铜铟镓金属预制层的电池基板双面同时加热,电池基板的背部一面用接触式热源加热,镀覆金属预制层的基板-面用光辐照加热,在其快速、均匀地升温到400~560℃区间时,对硒源或硫源进行接触式热源和光辐照的协同加热,促使铜铟镓金属预制层转变成化合物半导体光电薄膜材料。本发明方法克服了600℃高温硒化或硫化造成的玻璃软化,适合于工业化生产。

    铜铟镓硒太阳电池窗口层沉积的一种新方法

    公开(公告)号:CN1970833A

    公开(公告)日:2007-05-30

    申请号:CN200610129817.4

    申请日:2006-12-04

    Applicant: 南开大学

    CPC classification number: Y02P70/521

    Abstract: 本发明公开了一种CIGS太阳电池器件的制备工艺和一种直流辉光等离子体化学气相沉积Zn(O,S)、ZnO薄膜的反应系统,反应系统包括真空反应罩,上、下进气管,绝缘座,特征是在石英反应腔上方依次安装有冷却室、下气腔和上气腔,上、下出气管的上端分别伸在上、下气腔内,上出气管的下端穿过等离子体区,下出气管的出口在等离子体区的上方,两个气管呈均匀间隔排列,均垂直于p-CIGS衬底;p-CIGS衬底放在石墨台上表面的钽片上;在石英反应腔两侧的阳极和阴极呈竖直方向并排对立;反应室抽真空后,加热p-CIGS衬底,二氧化碳、硫化氢和氢气混合气进入下进气管,在等离子体作用下充分反应,二乙基锌或二甲基锌的气进入上进气管,在p-CIGS衬底上热裂解,制备出高阻Zn(O,S)薄膜,然后关闭通硫化氢气体,继续在Zn(O,S)薄膜沉积低阻ZnO薄膜,得到n-ZnO/Zn(O,S)/p-CIGS/Mo/glass太阳电池器件。

    一种用于硒化处理的高活性硒源的产生方法及装置和应用

    公开(公告)号:CN101284654A

    公开(公告)日:2008-10-15

    申请号:CN200810053051.5

    申请日:2008-05-09

    Applicant: 南开大学

    CPC classification number: Y02P20/128 Y02P70/521

    Abstract: 一种用于硒化处理的高活性硒源的产生方法及装置和应用。本发明方法包括:将固态硒加热蒸发产生硒蒸汽;向上步产生的硒蒸汽中并入氢气,或氢气与氩气的混合气体;将上步混合气体进行等离子体辉光分解与合成,得到硒化氢及高活性的硒气氛。硒源产生装置包括一个密闭反应罐,反应罐内的固态硒源、阳极和阴极辉光电极、硒化氢反应腔,以及反应罐外的加热装置和激励电源,同时在反应罐侧壁上设有气体输入端口,反应罐顶部设有用气体输出端口。本发明既保留了固态硒低价无毒、容易运输和保存的优点,又可在硒化过程中在线制备硒化氢及高活性硒气氛,使之具有硒化氢的高活性硒源的特性,还可节省大量的硒原料,降低成本,具有重要的实用价值。

    一种用于硒化处理的高活性硒源的产生方法及装置和应用

    公开(公告)号:CN100581995C

    公开(公告)日:2010-01-20

    申请号:CN200810053051.5

    申请日:2008-05-09

    Applicant: 南开大学

    CPC classification number: Y02P20/128 Y02P70/521

    Abstract: 一种用于硒化处理的高活性硒源的产生方法及装置和应用。本发明方法包括:将固态硒加热蒸发产生硒蒸汽;向上步产生的硒蒸汽中并入氢气,或氢气与氩气的混合气体;将上步混合气体进行等离子体辉光分解与合成,得到硒化氢及高活性的硒气氛。硒源产生装置包括一个密闭反应罐,反应罐内的固态硒源、阳极和阴极辉光电极、硒化氢反应腔,以及反应罐外的加热装置和激励电源,同时在反应罐侧壁上设有气体输入端口,反应罐顶部设有用气体输出端口。本发明既保留了固态硒低价无毒、容易运输和保存的优点,又可在硒化过程中在线制备硒化氢及高活性硒气氛,使之具有硒化氢的高活性硒源的特性,还可节省大量的硒原料,降低成本,具有重要的实用价值。

    直流辉光等离子体化学气相沉积Zn(O,S)薄膜的系统和工艺

    公开(公告)号:CN100510170C

    公开(公告)日:2009-07-08

    申请号:CN200610129817.4

    申请日:2006-12-04

    Applicant: 南开大学

    CPC classification number: Y02P70/521

    Abstract: 本发明公开了一种CIGS太阳电池器件的制备工艺和一种直流辉光等离子体化学气相沉积Zn(O,S)、ZnO薄膜的反应系统,反应系统包括真空反应罩,上、下进气管,绝缘座,特征是在石英反应腔上方依次安装有冷却室、下气腔和上气腔,上、下出气管的上端分别伸在上、下气腔内,上出气管的下端穿过等离子体区,下出气管的出口在等离子体区的上方,两个气管呈均匀间隔排列,均垂直于p-CIGS衬底;p-CIGS衬底放在石墨台上表面的钽片上;在石英反应腔两侧的阳极和阴极呈竖直方向并排对立;反应室抽真空后,加热p-CIGS衬底,二氧化碳、硫化氢和氢气混合气进入下进气管,在等离子体作用下充分反应,二乙基锌或二甲基锌的气进入上进气管,在p-CIGS衬底上热裂解,制备出高阻Zn(O,S)薄膜,然后关闭通硫化氢气体,继续在Zn(O,S)薄膜沉积低阻ZnO薄膜,得到n-ZnO/Zn(O,S)/p-CIGS/Mo/glass太阳电池器件。

    无镉铜铟镓硒薄膜太阳能电池缓冲层薄膜的制备方法

    公开(公告)号:CN1285129C

    公开(公告)日:2006-11-15

    申请号:CN200310107262.X

    申请日:2003-12-09

    Applicant: 南开大学

    CPC classification number: Y02P70/521

    Abstract: 本发明涉及无镉铜铟镓硒薄膜太阳能电池缓冲层薄膜的制备方法,在铜铟镓硒光学吸收层薄膜的表面上镀覆金属锌薄膜,然后将镀覆有金属锌薄膜的电池基板表面用光辐照加热,其衬底背面用接触式热源或光辐照方式加热,固态硒源或/和硫源用接触式热源和光辐照协同方式来加热,硒源或/和硫源的温度控制在160~280℃,硒或硫蒸气与锌薄膜之间用光辐射来催化它们的合成反应,锌薄膜的硒化或/和硫化处理温度控制在180~420℃,用时2~10分钟将锌薄膜转化成n-型ZnSe或ZnS半导体薄膜材料,制成无镉铜铟镓硒薄膜太阳能电池中的缓冲层薄膜。本发明方法可在铜铟镓金属预制层后硒化方法制备CIGS薄膜电池的生产线内进行连续化的生产操作。

    无镉铜铟镓硒薄膜太阳能电池缓冲层薄膜的制备方法

    公开(公告)号:CN1547262A

    公开(公告)日:2004-11-17

    申请号:CN200310107262.X

    申请日:2003-12-09

    Applicant: 南开大学

    CPC classification number: Y02P70/521

    Abstract: 本发明涉及无镉铜铟镓硒薄膜太阳能电池缓冲层薄膜的制备方法,在铜铟镓硒光学吸收层薄膜的表面上镀覆金属锌薄膜,然后将镀覆有金属锌薄膜的电池基板表面用光辐照加热,其衬底背面用接触式热源或光辐照方式加热,固态硒源或/和硫源用接触式热源和光辐照协同方式来加热,硒源或/和硫源的温度控制在160~280℃,硒或硫蒸气与锌薄膜之间用光辐射来催化它们的合成反应,锌薄膜的硒化或/和硫化处理温度控制在180~420℃,用时2~10分钟将锌薄膜转化成n-型ZnSe或ZnS半导体薄膜材料,制成无镉铜铟镓硒薄膜太阳能电池中的缓冲层薄膜。本发明方法可在铜铟镓金属预制层后硒化方法制备CIGS薄膜电池的生产线内进行连续化的生产操作。

    铜铟镓的硒或硫化物半导体薄膜材料的制备方法

    公开(公告)号:CN1547239A

    公开(公告)日:2004-11-17

    申请号:CN200310107202.8

    申请日:2003-12-05

    Applicant: 南开大学

    CPC classification number: Y02P70/521

    Abstract: 本发明涉及铜铟镓的硒或硫化物半导体薄膜材料的制备方法,是在铜铟镓硒或/和硫光学吸收层薄膜的制备工艺中,先用真空磁控溅射、加热蒸发或化学水浴电沉积法在钠钙玻璃Mo衬底上分步沉积化学式配比量的Cu、In、Ga金属预制层,再在热处理真空室内进行光硒化或/和硫化反应,其特征在于:对沉积有铜铟镓金属预制层的电池基板双面同时加热,电池基板的背部一面用接触式热源加热,镀覆金属预制层的基板一面用光辐照加热,在其快速、均匀地升温到400~560℃区间时,对硒源或硫源进行接触式热源和光辐照的协同加热,促使铜铟镓金属预制层转变成化合物半导体光电薄膜材料。本发明方法克服了600℃高温硒化或硫化造成的玻璃软化,适合于工业化生产。

Patent Agency Ranking