-
公开(公告)号:CN119238516A
公开(公告)日:2025-01-03
申请号:CN202411475829.7
申请日:2024-10-22
Applicant: 海南大学
Abstract: 本发明涉及人工智能视觉与机械臂应用技术领域,尤其涉及一种视觉机械臂物品定位拾取方法及系统,集成高精度的视觉检测与灵活的机械臂执行机构,实现了从目标检测到精准拾取的全自动化流程,减轻了人工操作的负担,提高了生产效率,针对传统视觉识别系统计算量大与资源消耗高的痛点,本发明进行了深度的轻量化改进,通过优化算法结构、减少模型参数量及计算复杂度,本系统相比原模型在性能上实现了成倍的提升,同时显著降低了对计算资源和硬件配置的依赖,这不仅使得系统能够在树莓派等低成本硬件平台上高效运行,还大幅降低了部署成本,提升了系统的普及率和可用性。
-
公开(公告)号:CN119200612A
公开(公告)日:2024-12-27
申请号:CN202411368968.X
申请日:2024-09-29
Applicant: 海南大学
Abstract: 本发明属于智能信息技术领域,具体涉及一种基于建图和导航算法的仓储智能车的路径规划方法,包括步骤一、动态雷达扫描模块实时检测获取环境信息,建图模块结合Gmapping算法和Cartographer算法,完成全局地图的预建图的构建;步骤二、导航模块借助Nav2系统进行定位和路径规划,计算仓储智能车的运动路径和速度信息,生成导航指令;步骤三、通信模块将所述导航指令传输至仓储智能车,仓储智能车执行导航指令,完成预定的运动任务,凭借高效的模块间通信与动态路径规划,本发明能够应对复杂环境下的多种障碍物,确保智能车高效、安全运行,尤其适用于要求高精度和连续性的仓储环境。
-
公开(公告)号:CN119396141A
公开(公告)日:2025-02-07
申请号:CN202411452632.1
申请日:2024-10-17
Applicant: 海南大学
IPC: G05D1/43 , G05D109/30
Abstract: 本发明涉及无人艇轨迹跟踪技术领域,尤其涉及一种基于自适应动态事件触发的无人艇轨迹跟踪控制方法,建立了无人艇的运动学模型、期望轨迹和位置误差动态方程。结合动态事件触发机制和自适应动态规划,给出了含有动态事件触发控制律的代价函数和Hamilton函数,减少了无人艇控制器的资源消耗。利用了神经网络良好的非线性逼近能力,近似获取未知的代价函数与最优控制律。将计算得到的最优控制律应用于无人艇的控制系统,驱动无人艇按照预定的轨迹进行精确跟踪。本发明提出的方法能够有效提高无人艇轨迹跟踪的精度,节省系统计算和通信资源。
-
公开(公告)号:CN118941984A
公开(公告)日:2024-11-12
申请号:CN202410933829.0
申请日:2024-07-12
Applicant: 海南大学
IPC: G06V20/17 , G06V40/10 , G06V10/25 , G06V10/44 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/048
Abstract: 本发明涉及一种基于高效通道优先注意力的海上目标检测方法,包括:获取待检测的海上图像,并输入预先构建并训练好的海上目标检测模型中,获取海上目标检测结果,海上目标检测模型包括依次连接的主干网络、颈部网络和多尺度自适应空间特征融合检测头;主干网络为改进RepViT主干网络,引入带残差的压缩激励模块和多尺度深度可分离高效通道优先注意力;颈部网络为拥有多种不同尺度特征输出的YOLOv8颈部网络;多尺度自适应空间特征融合检测头根据颈部网络输出的多种不同尺度特征,预测出多个预选框,并从多个预选框中确定最终的目标框和置信度。与现有技术相比,本发明能够有效提高海上目标的检测性能,能减少无人机的搜索时间,可用于海上救援等背景。
-
公开(公告)号:CN119600513A
公开(公告)日:2025-03-11
申请号:CN202411685240.X
申请日:2024-11-22
Applicant: 海南大学
Abstract: 本发明涉及红外目标检测技术领域,具体涉及一种面向无人艇的轻量型实时红外目标检测方法及系统,该方法通过无人艇搭载的红外热像仪采集红外数据,并进行预处理、标注和划分。采用轻量级GLAF‑MobileNetV4网络作为检测方法的主干,不仅提升实时性,还大幅减少了模型参数。其中,轻量型的全局局部自适应融合注意力,能巧妙地整合全局与局部信息,通过动态权重调整优化局部信息融合。同时,设计的动态自适应多尺度特征融合编码器,利用注意力引导机制,根据多尺度特征的重要性自适应调整融合比例。本发明部署简便,提升无人艇在低光照条件下的目标检测精度与实时性,检测效率显著。
-
-
公开(公告)号:CN120029289A
公开(公告)日:2025-05-23
申请号:CN202510170922.5
申请日:2025-02-17
Applicant: 海南大学
Abstract: 本发明涉及海洋智能系统技术领域,具体涉及一种基于DDPG‑DKNN的无人潜器路径跟踪方法,包括:实时采集无人潜器的航行指标,并以此构建DDPG算法的状态空间。基于双层网络架构,在Actor网络中生成动作策略,采用Critic网络评估其值函数,为策略的优化提供反馈。引入DKNN算法,在重播缓冲区中选择与当前状态最相似的样本,优化经验回放过程,增强算法的泛化能力。基于均方误差计算Critic网络的损失函数,采用随机梯度下降法迭代更新参数,不断提高网络的评估精度。基于DDPG‑DKNN算法实时生成控制策略。与现有技术相比,本发明具有提高无人潜器的路径跟踪精度等优点。
-
公开(公告)号:CN119963998A
公开(公告)日:2025-05-09
申请号:CN202510038085.0
申请日:2025-01-10
Applicant: 海南大学
IPC: G06V20/10 , G06V10/764 , G06V10/44 , G06V10/80 , G06V10/771 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及遥感影像变化检测技术领域,尤其涉及一种基于局部细节特征聚合的冰川变化遥感检测方法及系统,通过对局部细节信息的有效聚合与优化,在复杂地形与多变环境条件下显著提高冰川变化检测的精度,增强对冰川边缘微细结构的捕捉与识别能力。系统包括:多尺度特征提取模块:用以提取高分辨率双时相冰川影像多尺度特征。局部细节聚合模块:用以聚合冰川局部细节信息检测冰川图像的边缘和过渡区域。形状感知模块:用以灵活地捕捉冰川复杂的结构和轮廓。多尺度差异预测模块:用以同时处理大尺度和小尺度的变化,提供更全面的检测结果。与现有技术相比,本发明能够精确检测冰川的复杂形状和边界信息,准确识别位于冰川边缘处的微小变化区域。
-
公开(公告)号:CN119882790A
公开(公告)日:2025-04-25
申请号:CN202510007917.2
申请日:2025-01-03
Applicant: 海南大学
IPC: G05D1/485 , G05D101/10
Abstract: 本发明涉及海洋智能系统技术领域,尤其涉及一种无人潜器的自适应航迹控制方法,该方法通过实时采集无人潜器在复杂海洋环境中的运行参数,基于DUAE算法自适应地提取参数的关键特征,并将其作为IDDPG算法的状态空间。通过在IDDPG算法中引入连续的高斯噪声,有效提高控制策略的探索性,从而避免陷入局部最优解。采用小批次随机采样的方式从重播缓冲区中采集样本,降低样本间的相关性,并通过软更新方法防止目标网络发生过拟合。基于IDDPG算法实时生成自适应航迹控制策略,确保无人潜器高精度地完成航迹跟踪任务。与现有技术相比,本发明具有提高了无人潜器的航迹跟踪精度和任务执行效率等优点。
-
-
-
-
-
-
-
-