-
公开(公告)号:CN116028840A
公开(公告)日:2023-04-28
申请号:CN202111253676.8
申请日:2021-10-27
Applicant: 海南大学
IPC: G06F18/24 , G06F18/10 , G06F18/214 , G06N3/096 , G06N3/0464
Abstract: 本发明涉及一种最大重叠离散小波包变换时频谱的船用转子故障诊断方法,包括以下步骤:1)获取信号:采集转子振动信号x(t);2)信号降噪:对转子振动信号x(t)采用奇异值差分谱降噪;3)信号重构:采用最大重叠离散小波包变换方法对降噪后信号x'(t)进行分解,获得重构信号x″(t);4)构建数据集:采用Hilbert变换获得重构信号x″(t)的二维时频谱图,形成转子训练数据集M和测试数据集N;5)建立预训练故障诊断模型;6)微调网络模型参数;7)验证模型:将测试数据集N输入训练好的AlexNet网络中,根据输出结果对转子的工作状态和故障类型进行诊断。与现有技术相比,本发明具有提升信号特征的获取能力、提高诊断准确率等优点。
-
公开(公告)号:CN119396141A
公开(公告)日:2025-02-07
申请号:CN202411452632.1
申请日:2024-10-17
Applicant: 海南大学
IPC: G05D1/43 , G05D109/30
Abstract: 本发明涉及无人艇轨迹跟踪技术领域,尤其涉及一种基于自适应动态事件触发的无人艇轨迹跟踪控制方法,建立了无人艇的运动学模型、期望轨迹和位置误差动态方程。结合动态事件触发机制和自适应动态规划,给出了含有动态事件触发控制律的代价函数和Hamilton函数,减少了无人艇控制器的资源消耗。利用了神经网络良好的非线性逼近能力,近似获取未知的代价函数与最优控制律。将计算得到的最优控制律应用于无人艇的控制系统,驱动无人艇按照预定的轨迹进行精确跟踪。本发明提出的方法能够有效提高无人艇轨迹跟踪的精度,节省系统计算和通信资源。
-
公开(公告)号:CN119963998A
公开(公告)日:2025-05-09
申请号:CN202510038085.0
申请日:2025-01-10
Applicant: 海南大学
IPC: G06V20/10 , G06V10/764 , G06V10/44 , G06V10/80 , G06V10/771 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及遥感影像变化检测技术领域,尤其涉及一种基于局部细节特征聚合的冰川变化遥感检测方法及系统,通过对局部细节信息的有效聚合与优化,在复杂地形与多变环境条件下显著提高冰川变化检测的精度,增强对冰川边缘微细结构的捕捉与识别能力。系统包括:多尺度特征提取模块:用以提取高分辨率双时相冰川影像多尺度特征。局部细节聚合模块:用以聚合冰川局部细节信息检测冰川图像的边缘和过渡区域。形状感知模块:用以灵活地捕捉冰川复杂的结构和轮廓。多尺度差异预测模块:用以同时处理大尺度和小尺度的变化,提供更全面的检测结果。与现有技术相比,本发明能够精确检测冰川的复杂形状和边界信息,准确识别位于冰川边缘处的微小变化区域。
-
公开(公告)号:CN119600513A
公开(公告)日:2025-03-11
申请号:CN202411685240.X
申请日:2024-11-22
Applicant: 海南大学
Abstract: 本发明涉及红外目标检测技术领域,具体涉及一种面向无人艇的轻量型实时红外目标检测方法及系统,该方法通过无人艇搭载的红外热像仪采集红外数据,并进行预处理、标注和划分。采用轻量级GLAF‑MobileNetV4网络作为检测方法的主干,不仅提升实时性,还大幅减少了模型参数。其中,轻量型的全局局部自适应融合注意力,能巧妙地整合全局与局部信息,通过动态权重调整优化局部信息融合。同时,设计的动态自适应多尺度特征融合编码器,利用注意力引导机制,根据多尺度特征的重要性自适应调整融合比例。本发明部署简便,提升无人艇在低光照条件下的目标检测精度与实时性,检测效率显著。
-
-
-