-
公开(公告)号:CN113220011B
公开(公告)日:2023-02-03
申请号:CN202110335242.6
申请日:2021-03-29
Applicant: 北京控制工程研究所
IPC: G05D1/10
Abstract: 一种微型CMG组合体模块及组合体模块控制系统,CMG组合体模块包括N个依次拼装的CMG组合体,属于同一个CMG组合体中的两个控制力矩陀螺的框架轴Z指向相同;两相邻CMG组合体中的控制力矩陀螺框架轴指向正交;且相邻CMG组合体中的控制力矩陀螺构成的平面互相平行。组合体模块控制系统包括:飞轮电机控制模块、框架电机控制模块和控制单元;每个CMG组合体均设置有对应的飞轮电机控制模块、框架电机控制模块和控制单元。本发明针对微纳卫星快速设计,快速集成的需求,通过机电一体化设计,单模块可实现微纳卫星单轴姿态机动,通过双模块组合可实现整星三轴机动。
-
公开(公告)号:CN107539498A
公开(公告)日:2018-01-05
申请号:CN201710627171.0
申请日:2017-07-28
Applicant: 北京控制工程研究所
IPC: B64G1/28
Abstract: 一种模块化微型控制力矩陀螺总体结构,包括框架转子组件、框架驱动组件和连接定位环;其中,框架驱动组件由旋转壳、固定轴、内加载环、外加载环、旋转壳锁紧螺母、固定轴锁紧螺母、轴承和框架电机组成,框架电机的外壳安装在固定轴内;框架转子组件与框架驱动组件通过连接定位环定位,保证转子的质心精确处于框架驱动组件的旋转中心;框架驱动组件的旋转壳、框架转子组件与连接定位环通过螺钉连接;框架驱动组件的框架电机输出轴与框架转子系统的框架连接,并通过连接顶丝固定。本发明能够实现快速制造、快速装配与快速测试,还能够有效减小控制力矩陀螺的重量与外形尺寸,而且可保证框架转子组件的质心精确处于框架驱动组件的旋转中心。
-
公开(公告)号:CN106556385A
公开(公告)日:2017-04-05
申请号:CN201610916442.X
申请日:2016-10-20
Applicant: 北京控制工程研究所
IPC: G01C19/06
Abstract: 一种新型控制力矩陀螺框架组件结构,包括密封罩、框幅、密封罩垫块、框缘和外螺纹圆锥销。框幅用外螺纹圆锥销定位于框缘,框幅用螺钉固紧于框缘,用来支承高速转子,密封罩垫块用螺钉固紧于框缘,用来定位密封罩。本发明提出的新型框架组件结构,采用承力件和密封件分离的结构,由密封罩和框缘组成密封系统来承担框架组件的大气压差,框幅支承高速转子,高速轴系远离密封罩焊接面,能保证高速轴承的精确加载、降低整机功耗,消除焊接过程中瞬时高热量对高速轴系的影响,实现装配精度检测和高等级动平衡精度。
-
公开(公告)号:CN105786036A
公开(公告)日:2016-07-20
申请号:CN201610206725.5
申请日:2016-04-05
Applicant: 北京控制工程研究所
IPC: G05D13/46
CPC classification number: G05D13/46
Abstract: 一种抑制转子动不平衡扰动的控制力矩陀螺框架控制系统及方法,系统在双环PI控制系统基础上嵌入前馈补偿模块和算法切换模块;在预设的Ng个控制周期内,设置整个框架控制系统工作在PI控制模式;从Ng+1控制周期开始,在每个控制周期,通过算法切换模块计算当前控制周期内CMG框架转速精度,确定是否需要切换当前控制周期的控制模式,若切换后为前馈补偿模式,则将速度环PI控制器输出的力矩参考值与反馈的框架电机的转矩做差,得到当前控制周期的机械转矩误差ej+1,前馈补偿模块根据ej+1计算当前控制周期的电流前馈补偿值Δiqref,j+1,将Δiqref,j+1加入所述的双环PI控制系统;若切换后为PI控制模式,则封锁电流前馈补偿,按照双环PI控制系统进行控制。
-
公开(公告)号:CN118354169A
公开(公告)日:2024-07-16
申请号:CN202410435729.5
申请日:2024-04-11
Applicant: 北京控制工程研究所
Inventor: 宋玉志 , 曹中祥 , 盖芳钦 , 刘婧 , 郑然 , 隋杰 , 周昊 , 刘启海 , 王伟华 , 蒋俊 , 来林 , 张成龙 , 张朋 , 李硕 , 祝浩 , 蒋媛媛 , 种会萱 , 温亚楠 , 陈志玲
IPC: H04N23/11 , H04N23/56 , H04N23/667 , H04N23/73 , H04N23/661 , H04N23/74 , H04N13/275 , G06T7/00
Abstract: 本发明涉及一种滑环磨屑三维测量及红外成像监视系统,包括小型化可见光双目相机、小型红外相机、环形照明光源、数据处理电路、图像处理模块,环形照明光源对滑环金属镜面实现匀光照明,避免镜面炫光影响,小型化可见光双目相机和小型红外相机连接数据处理电路,由数据处理电路采集、存储、传输可见光图像和红外图像,网络交换机连接多个数据处理电路,实现多套监视系统组网;图像处理算法提取磨屑特征建立磨屑的空间三维分布,实现磨屑运动轨迹追踪及温度变化监视。本发明实现动态监测磨屑的生成和剥离过程以及迁移运动规律,对可能出现的短路和放电现象进行捕获,为电刷‑滑环装置的优化、升级提供依据。
-
公开(公告)号:CN113212807B
公开(公告)日:2023-05-12
申请号:CN202110348506.1
申请日:2021-03-31
Applicant: 北京控制工程研究所
Abstract: 本发明一种微纳卫星用控制力矩陀螺框架转子组件,包括:旋转质量本体、第一角接触球轴承、第二角接触球轴承、第一轴承压盖、第二轴承压盖、预紧螺钉、框架、高速电机转子和高速电机定子;旋转质量本体、第一角接触球轴承、第二角接触球轴承、第一轴承压盖、第二轴承压盖和框架构成一个封闭力系,预紧螺钉通过轴承压盖对封闭力系施加预紧力。本发明的控制力矩陀螺框架转子组件减少了部件数量及联接环节,节省了组件的整体重量,同时减小风阻影响,缩短旋转质量本体到达标称转速的时间,实现控制力矩陀螺快速对外输出力矩的功能,解决了微纳卫星实现快速、大范围的姿态机动问题。
-
公开(公告)号:CN115597657A
公开(公告)日:2023-01-13
申请号:CN202211086169.4
申请日:2022-09-06
Applicant: 北京控制工程研究所(CN)
Abstract: 本发明提供了一种可更换空间成像试验系统,包括试验控制系统和可更换的试验子样,试验子样与试验控制系统通过插接件连接;试验子样为封装有试验对象和空间成像试验仪器的密封件,空间成像试验仪器为试验对象提供试验环境并采集试验数据,试验数据包括试验对象的图像数据和状态数据,状态数据至少包括温度信号数据和电信号数据;试验控制系统接收外部指令对空间成像试验仪器进行供电和控制,根据状态数据判断试验对象的状态,形成采集控制策略将采集的试验数据传输至地面。本发明能够获取试验对象在轨运动、变化规律,针对下行资源限制和传输链路故障采取策略对试验关键特征进行捕获和数据传输,能够稳定、可靠地实现多批次接续试验。
-
公开(公告)号:CN113879566A
公开(公告)日:2022-01-04
申请号:CN202111216940.0
申请日:2021-10-19
Applicant: 北京控制工程研究所
IPC: B64G1/28
Abstract: 一种控制力矩陀螺框架系统高频扰动的自适应补偿方法,适用于频率固定或具有频率漂移特性的高频力矩干扰的自适应补偿应用。本专利提供了一种控制力矩陀螺框架系统高频扰动的自适应前馈补偿方法,可实现在框架响应带宽低于转子频率的情况下,将转子动不平衡扰动频率幅值衰减至10%以下。从而极大程度地削弱了目前框架转速中最大的扰动因素即转子动不平衡扰动。实现将框架转速稳定度提升一倍,进而将控制力矩陀螺的输出力矩的稳定度也提升了一倍。
-
公开(公告)号:CN105786036B
公开(公告)日:2018-08-31
申请号:CN201610206725.5
申请日:2016-04-05
Applicant: 北京控制工程研究所
IPC: G05D13/46
Abstract: 一种抑制转子动不平衡扰动的控制力矩陀螺框架控制系统及方法,系统在双环PI控制系统基础上嵌入前馈补偿模块和算法切换模块;在预设的Ng个控制周期内,设置整个框架控制系统工作在PI控制模式;从Ng+1控制周期开始,在每个控制周期,通过算法切换模块计算当前控制周期内CMG框架转速精度,确定是否需要切换当前控制周期的控制模式,若切换后为前馈补偿模式,则将速度环PI控制器输出的力矩参考值与反馈的框架电机的转矩做差,得到当前控制周期的机械转矩误差ej+1,前馈补偿模块根据ej+1计算当前控制周期的电流前馈补偿值Δiqref,j+1,将Δiqref,j+1加入所述的双环PI控制系统;若切换后为PI控制模式,则封锁电流前馈补偿,按照双环PI控制系统进行控制。
-
公开(公告)号:CN107707172A
公开(公告)日:2018-02-16
申请号:CN201710828689.0
申请日:2017-09-14
Applicant: 北京控制工程研究所
CPC classification number: H02P25/18 , H02P21/18 , H02P21/22 , H02P25/22 , H02P2203/03
Abstract: 一种CMG低速框架快速宽转矩范围、高精度驱动控制系统,采用双绕组电机形式,一个可提供大力矩,一个可提供高精度力矩,两电机可根据工况自由切换,具有宽转矩范围、高精度力矩输出能力,能够满足面向未来多任务实现的机动灵活性需求,以及超敏捷、动中成像的高性能卫星平台的需求。
-
-
-
-
-
-
-
-
-