-
公开(公告)号:CN110578078A
公开(公告)日:2019-12-17
申请号:CN201910925915.6
申请日:2019-09-27
Applicant: 桂林理工大学
Abstract: 本发明提供了一种铝基复合材料焊丝的制备方法与应用,属于铝合金焊丝的技术领域。该制备方法包括:首先利用半固态搅拌加超声辅助铸造的方法将SiC颗粒成功引入到合金中并铸造成长150mm且直径10mm的杆,将得到的铸锭进行均匀化热处理,然后经拉拔机多道次拉拔得到直径3mm的铝基复合材料焊丝。该方法显著提高了焊丝的生产效率,大幅度降低焊丝的生产成本并且生产出的铝基复合材料焊丝具有使得焊缝晶粒细化,拉伸强度、硬度显著提高等特点。
-
公开(公告)号:CN108857114A
公开(公告)日:2018-11-23
申请号:CN201811047534.4
申请日:2018-09-09
Applicant: 桂林理工大学
IPC: B23K28/02
CPC classification number: B23K28/02
Abstract: 本发明公开了一种预制坡口情况下熔化焊辅热搅拌摩擦焊接方法。首先在待焊工件(1)上预制不同形状的坡口(6),然后利用熔化焊完成待焊工件(1)的焊接,熔化的液态金属填满坡口(6)预热焊缝,焊接过程中,搅拌摩擦焊接紧随熔化焊之后,搅拌头(3)位于熔化焊焊枪(5)之后0~300mm,焊接过程中搅拌摩擦焊的焊接速度与熔化焊的焊接速度保持一致,从而使搅拌头(3)与熔化焊焊枪(5)距离保持不变。熔化焊能均匀、有效预热待焊工件,而随后的搅拌摩擦焊接起到提高接头性能的作用,本发明将两种焊接方式的结合能极大的扬长避短,并且焊接操作简便、灵活。
-
公开(公告)号:CN106244867A
公开(公告)日:2016-12-21
申请号:CN201610834532.4
申请日:2016-09-20
Applicant: 桂林理工大学
CPC classification number: C22C21/02 , C22C1/1005 , C22C1/1036 , C22C32/0068 , C22C2001/1047
Abstract: 本发明公开了一种纳米TiN颗粒增强铝基复合材料的制备方法。将纳米TiN颗粒和Al粉以质量比为TiN:Al=1:20~1:40混合后置于球磨罐中干磨,每球磨1分钟,停机静置2分钟,球磨过程总时长为43分钟,得到纳米TiN和Al粉的复合粉末;将铝基体原料加热、熔化,在630℃时对其机械搅拌、扒渣,在搅拌的同时按纳米TiN的加入量为铝基体的质量百分含量0.1~0.2% 的量,将复合粉末在5~20分钟内加入到铝合金熔体中,搅拌15分钟后升温至690 °C对熔体超声处理10~20分钟,扒渣后升温至750 °C,浇入到预热至350 °C的模具中,冷却后脱模。本发明制备的纳米TiN颗粒增强铝基复合材料,有效解决了纳米TiN颗粒在铝合金熔体中润湿性和分散性差的难题,且成本低、操作简单。
-
公开(公告)号:CN102676175A
公开(公告)日:2012-09-19
申请号:CN201210166333.2
申请日:2012-05-27
Applicant: 桂林理工大学
IPC: C09K11/89
Abstract: 本发明公开了一种水相法制备近红外荧光HgSe量子点的方法。(1)量取25ml去离子水,依次加入0.08~0.15mmol硒源和0.06~0.08g硼氢化钠,于60~90℃水浴加热至溶液中无气泡产生,冷却至室温,即获得无色溶液;(2)将0.1~0.2g氯化高汞溶解于80~100ml去离子水中并加入0.05~0.2ml质量分数为90.0%的巯基乙酸溶液作为稳定剂,用1mol/L氢氧化钠溶液调节pH值至10~12,将溶液剧烈搅拌30分钟;(3)将步骤(1)所得无色溶液加入到步骤(2)所得溶液中,搅拌约1小时,得到HgSe量子点;所述硒源为可溶性的亚硒酸盐或二氧化硒。本发明设备简单,操作方便,容易控制;通过本发明的方法得到的HgSe量子点可作为荧光探针应用在生物及医学等领域。
-
公开(公告)号:CN106399741A
公开(公告)日:2017-02-15
申请号:CN201610869909.X
申请日:2016-10-02
Applicant: 桂林理工大学
CPC classification number: C22C21/10 , B22F3/1121
Abstract: 本发明公开了一种造孔剂烧结制备7系泡沫铝合金材料的方法。该7系泡沫铝合金材料以粒径为200-300 μm,纯度99.99%的NH4HCO3颗粒为造孔剂;7系铝合金粉粒径为200-300 μm。将7系铝合金粉末和NH4HCO3颗粒造孔剂按照质量比Al:NH4HCO3=1-10:1-2完全混合后,用50-200 MPa的压制力将混合粉末压制成生坯,放入在石英管式烧结炉中采取梯级加热方式,先升温至150℃-300℃并保温2-3小时,再升温至480-540 ℃并保温0.5-2小时进行烧结,随炉冷至室温后获得7系泡沫铝合金材料。本发明造孔剂成本低,孔洞分布均匀易于控制孔洞尺寸,且不存在杂质元素污染基体的问题,其平均孔径为126 μm-208 μm,孔隙率为25%-80%,密度为0.54g/cm3-2.03g/cm3。
-
公开(公告)号:CN104789772B
公开(公告)日:2017-01-04
申请号:CN201510157301.X
申请日:2015-04-06
Applicant: 桂林理工大学
CPC classification number: Y02P10/234
Abstract: 本发明公开了一种白钨矿碱浸节能降耗的方法。(1)将加工的白钨精矿放入浆料桶,加入浓缩碱液、辅助试剂和氢氧化钠;(2)泵入无夹套高压浸出釜中,直接通蒸汽及保温一段时间,停止搅拌反应;(3)卸压放料入浆化槽,注水浆化过滤,第一道滤液流入浓液储槽,滤渣继续用热水洗涤,洗液与浓液分开储存;(4)将浓液储槽中的溶液泵入三效浓缩蒸发器,生料口在第三效,出料口在第一效,出口料液流入一个单效夹套结晶锅中继续浓缩,关汽阀排料;(5)液固分离,滤过的碱液返回到球磨浆料配碱,结晶粉末送至溶解槽中溶解稀释,进行离子交换。本发明改电加热为蒸汽直接加热,节能,生产效率高,采用多效蒸发器进行余碱回收,大大降低能源消耗,提高碱回收率。
-
公开(公告)号:CN106244841A
公开(公告)日:2016-12-21
申请号:CN201610834577.1
申请日:2016-09-20
Applicant: 桂林理工大学
CPC classification number: C22C21/16 , C22C1/1005 , C22C1/1036 , C22C32/0063 , C22C2001/1047
Abstract: 本发明公开了一种通过压片预处理制备SiC颗粒增强铝基复合材料的方法。先将SiC颗粒与铝粉置于100℃的真空干燥内干燥,然后放在球磨机中进行球磨,使其能够混合均匀,取出后将混合粉末放在粉末压片机上压制成片状。将压好的混合粉末片放在100℃真空干燥箱内干燥2小时,再加入到625℃的熔融铝-铜合金中,待熔化后进行机械搅拌15~30分钟,静置10~15分钟,当温度升到700℃时进行超声波处理,除气除渣,温度升到750℃时浇铸到预热温度为380℃的板材磨具中,得到SiC颗粒增强铝基复合材料。本发明制备的颗粒增强金属基复合材料,发挥了增强颗粒与基体的性能,调控方便,工艺可靠,解决了复合材料内部增强颗粒分布不均匀对其性能的致命影响,能从一定程度上改善其力学性能。
-
公开(公告)号:CN104846226A
公开(公告)日:2015-08-19
申请号:CN201510280482.5
申请日:2015-05-28
Applicant: 桂林理工大学
Abstract: 本发明公开了一种添加陶瓷纳米颗粒铸造铝基复合材料的方法。按质量比SiO2:Al=1:5或TiO2:Al=1:3预先混合后球磨均匀得混合料,然后按质量比1:8或1:12与厚度0.5mm预处理的纯铝板材,使用二辊轧机进行轧制,作为原料,最终使用搅拌铸造法制造铝基纳米复合材料。本发明制备的铝基纳米复合材料,有效改善了陶瓷纳米颗粒与铝合金熔体的润湿性和分散性问题,综合力学性能优异:SiO2/Al-7Si-0.3Mg的屈服强度、抗拉强度及延伸率比铸态Al-7Si-0.3Mg合金分别提高了18.8%、19.1%及90.7%;TiO2/Al-7Si-0.3Mg的屈服强度、抗拉强度及延伸率比铸态Al-7Si-0.3Mg合金分别提高了15.3%、17.4%及58.1%。
-
公开(公告)号:CN104789772A
公开(公告)日:2015-07-22
申请号:CN201510157301.X
申请日:2015-04-06
Applicant: 桂林理工大学
CPC classification number: Y02P10/234
Abstract: 本发明公开了一种白钨矿碱浸节能降耗的方法。(1)将加工的白钨精矿放入浆料桶,加入浓缩碱液、辅助试剂和氢氧化钠;(2)泵入无夹套高压浸出釜中,直接通蒸汽及保温一段时间,停止搅拌反应;(3)卸压放料入浆化槽,注水浆化过滤,第一道滤液流入浓液储槽,滤渣继续用热水洗涤,洗液与浓液分开储存;(4)将浓液储槽中的溶液泵入三效浓缩蒸发器,生料口在第三效,出料口在第一效,出口料液流入一个单效夹套结晶锅中继续浓缩,关汽阀排料;(5)液固分离,滤过的碱液返回到球磨浆料配碱,结晶粉末送至溶解槽中溶解稀释,进行离子交换。本发明改电加热为蒸汽直接加热,节能,生产效率高,采用多效蒸发器进行余碱回收,大大降低能源消耗,提高碱回收率。
-
公开(公告)号:CN101656308A
公开(公告)日:2010-02-24
申请号:CN200910114386.8
申请日:2009-09-11
Applicant: 桂林理工大学
Abstract: 本发明公开了一种溶胶-凝胶法制备锂离子电池正极材料Li 3 V 2 (PO 4 ) 3 。将五氧化二钒粉末加热到800℃,并恒温2h使其熔融后迅速倒入装有水的容器中形成棕红色溶液,然后向棕红色溶液中加入具有还原性的螯合剂、锂盐和磷酸盐搅拌混合均匀后,在100℃烘箱中干燥4小时即得前驱体;将得到的前驱体在惰性气体的保护下于400℃-550℃烧结5-8h,冷却后即为成品Li 3 V 2 (PO 4 ) 3 。本发明简化了合成工艺,降低了合成成本,降低了合成温度,缩短了合成时间,提高了样品的充放电性能和循环性能。
-
-
-
-
-
-
-
-
-