-
公开(公告)号:CN110413015B
公开(公告)日:2023-08-01
申请号:CN201910568501.2
申请日:2019-06-27
Applicant: 北京控制工程研究所
Inventor: 刘旭辉 , 魏延明 , 龙军 , 卢国权 , 杨灵芝 , 陈明阳 , 汪旭东 , 官长斌 , 陈君 , 沈岩 , 攸兴杰 , 付拓取 , 张伟 , 宋新河 , 张良 , 李恒建 , 王焕春
Abstract: 本发明公开了一种基于闭环控制的微牛量级微推力动态测试台及测试方法,该微推力动态测试台包括:摆臂、标定线圈、标定磁铁、标定控制器、位移传感器、位移传感器卡件、PID闭环控制模块、位移计控制器、阻尼机构、驱动力线圈、挠性轴机构和底座;摆臂通过挠性轴机构安装在底座上;标定线圈缠绕在标定磁铁外侧、与标定控制器连接;驱动力线圈、位移计控制器和标定磁铁依次设置在摆臂上;驱动力线圈、位移计控制器和位移传感器分别与PID闭环控制模块连接;阻尼机构与摆臂靠近驱动力线圈的一端间隔设置,摆臂的另一端上设置有待测推力器安装工位。通过本发明能够有效提升微推力动态测试台的固有频率,实现微牛量级的微推力动态测试。
-
公开(公告)号:CN115415667A
公开(公告)日:2022-12-02
申请号:CN202211105374.0
申请日:2022-09-09
Applicant: 北京控制工程研究所
Abstract: 本发明公开了一种航天器电动阀门产品自动装配装置,位移平台用于调节翻转机构在三维空间中的位置,阀门产品工装用于在预紧力加载装置的作用下对阀门产品施加预紧力,还设有用于电性能测试和跑合的上电接口和用于焊接阀门产品的焊接孔,翻转机构带动旋转机构翻转,旋转机构带动阀门产品工装实旋转。本发明还公开了一种航天器电动阀门产品自动装配方法,阀门产品工装移动至预紧力加载装置下方,进行阀芯行程测试、电性能测试和跑合;阀门产品工装移动至激光焊接装置下方进行焊接。本发明有利于简化操作,而且可以通过一种机构实现两个工位的自动化操作功能,使系统简洁、小型化,低成本实现自动化。
-
公开(公告)号:CN113102767B
公开(公告)日:2022-10-28
申请号:CN202110292818.5
申请日:2021-03-18
Applicant: 北京控制工程研究所
Inventor: 张阿莉 , 刘锦涛 , 丁凤林 , 魏延明 , 宋飞 , 李文 , 杨家艾 , 刘捷 , 林倩 , 方忠坚 , 王远 , 陈芳浩 , 罗莉 , 王渊 , 武葱茏 , 纪嘉龙 , 刘国西 , 于洋 , 高永 , 李中 , 马彦峰
Abstract: 本发明涉及一种一体化制备板式表面张力贮箱的3D打印工艺方法,包括如下步骤:根据板式表面张力贮箱的结构特点,将贮箱壳体分成两部分,贮箱气口以及与其连接的贮箱壳体端部、气液分离器作为整体一进行3D打印,其余贮箱壳体、板式表面管理装置与贮箱液口作为整体二;在整体二上沿贮箱轴向方向设计板状筋支撑,将板状筋支撑与整体二一起作为一个整体进行3D打印,打印过程中贮箱轴向垂直与基板方向,基板上放置网格支撑及圆柱支撑,作为贮箱打印过程中的底部支撑;去除3D打印后的底部支撑以及板状筋支撑,并对两个打印件进行热处理;将两个打印件通过一次激光焊接得到板式表面张力贮箱;对得到的板式表面张力贮箱进行后期处理并加工贮箱接口。
-
公开(公告)号:CN115199436A
公开(公告)日:2022-10-18
申请号:CN202210604540.5
申请日:2022-05-30
Applicant: 北京控制工程研究所
Abstract: 本发明提出一种超微流量液体推进剂贮存供给系统,包括推进剂贮存部分与超微流量控制部分。贮箱与恒压驱动系统为存储的液体推进剂提供恒定的输出压力;微小流量阻尼器与微流控芯片以微流道的形式为系统提供足够的流阻,使得液体推进剂的输出达到十纳升每秒量级的超微流量;压电比例阀与超微流量传感器对流量闭环控制实现流量输出控制。流体控制部件的微型化设计减小了贮供系统的占用体积。本发明系统可应用于包括空间推进在内的多种微流体控制领域,能够为空间微推力器存储一定容量的液体推进剂,并提供纳升每秒量级的流量控制和输出。
-
公开(公告)号:CN108526735B
公开(公告)日:2020-09-18
申请号:CN201810227475.2
申请日:2018-03-20
Applicant: 北京控制工程研究所
IPC: G05D7/00
Abstract: 本发明公开了一种微流量控制装置多层孔板多通道气体节流组件的制造方法,包括如下步骤:采用光刻的方法对孔板进行刻蚀;对孔板进行微孔激光加工;将激光加工后的孔板和盖板进行扩散焊接形成多层孔板多通道气体节流组件。本发明通过刻蚀孔板、激光加工、扩散焊,发挥了多种特殊加工工艺的优势,解决了传统气体微流量控制组件易堵塞的问题,提高了气体微流量控制组件的精度,弥补了传统气体微流量控制组件精度低的缺陷;通过加压扩散焊接孔板和盖板,实现了多层孔板多通道气体微流量控制组件的可靠连接及密封,克服了传统气体微流量控制组件可靠性差的难题。
-
公开(公告)号:CN111637029A
公开(公告)日:2020-09-08
申请号:CN202010397941.9
申请日:2020-05-12
Applicant: 北京控制工程研究所
IPC: F03H1/00
Abstract: 本发明涉及分段式复合结构磁等离子体动力推力器阴极及其制备方法。所述阴极包括导热段、过渡段、发射段、进气缓冲腔体、多孔导流通道,导流通道均匀分布并贯穿导热段、过渡段和发射段,与进气缓冲腔体相通,等离子体通过进气缓冲腔体进入阴极并使气体均匀的进入多孔导流通道进行工质输送,阴极由铜或铜合金制成的导热段、连接导热段和发射段的过渡段与钨基复合氧化物复合材料制成的发射段组成,实现了促进发射段的导热,增加温度梯度,从而增加钨基阴极的散热,降低阴极表面温度,减轻阴极的烧蚀。
-
公开(公告)号:CN108725847B
公开(公告)日:2020-06-09
申请号:CN201810547752.8
申请日:2018-05-31
Applicant: 北京控制工程研究所
IPC: B64G1/40
Abstract: 本发明公开了一种多路固体推力器阵列控制驱动系统及方法,相比较传统的MEMS微推力器控制系统在点火指令发出以后,无法获取MEMS微推力器是否点火成功的信息,本发明通过对点火电流进行采样,将该采样的电流信息反馈给上位机,从而可以直接反馈点火是否成功的信息,该点火电流采样电压的幅值可以计算获得成功点火数目的信息。传统的多路固体推力器阵列控制驱动系统需要上位机告知具体的点火点位置坐标,本发明可自行判断阵列模块的点火位置坐标信息,自行选择点火点,并进行点火,通过向上位机反馈点火成功信号,使MEMS固体微推力器的控制更为灵活。
-
公开(公告)号:CN108413106B
公开(公告)日:2019-12-20
申请号:CN201810216360.3
申请日:2018-03-16
Applicant: 北京控制工程研究所
IPC: F16K31/06
Abstract: 本发明公开了一种微小流量精确控制的比例电磁阀,包括:入口接头、阀体‑线圈组件、外导磁体、衔铁组件、阀座组件、出口接头、第一外壳和第二外壳;其中,第一外壳和第二外壳相连接;阀体‑线圈组件、外导磁体和衔铁组件均设置于第一外壳和第二外壳形成的内部空间内,并且阀体‑线圈组件和衔铁组件相连接;外导磁体套设于阀体‑线圈组件的外部;入口接头与阀体‑线圈组件相连接;出口接头的一端面与衔铁组件相压接,所述出口接头的侧壁与所述第二外壳相连接;所述阀座组件设置于所述出口接头内,所述衔铁组件的一端嵌设于所述阀座组件内。本发明能够实现高精度的压力和流量连续输出控制功能,能有效保证电推进系统的可靠工作。
-
公开(公告)号:CN109724637A
公开(公告)日:2019-05-07
申请号:CN201811581604.4
申请日:2018-12-24
Applicant: 北京控制工程研究所
IPC: G01D18/00
Abstract: 本发明提供一种基于试验数据的传感器元件质量评估方法,用于传感器元件的可靠性筛选,该方法基于传感器元件试验数据,采用相关性分析和主成分分析的数学方法发掘传感器元件试验过程数据隐含的信息,并采用概率统计的方法对分析结果进行量化和数据判读,以剔除存在风险的传感器元件。本发明从试验数据分析角度出发,能有效弥补传统方法仅依靠可靠性试验进行筛选的不足,可以很好地用于传感器元件的可靠性筛选,尤其适用于航空、航天等领域对传感器元件可靠性要求高的场合。
-
公开(公告)号:CN109630368A
公开(公告)日:2019-04-16
申请号:CN201811448865.9
申请日:2018-11-28
Applicant: 北京控制工程研究所
Inventor: 丛云天 , 周成 , 王戈 , 李永 , 汤海滨 , 刘磊 , 魏延明 , 丁凤林 , 王宝军 , 叶玉龙 , 郭盼 , 袁化宇 , 孙鲲 , 田海龙 , 徐晓东 , 兰赛赛 , 薛有
IPC: F03H1/00
CPC classification number: F03H1/0031 , F03H1/0081
Abstract: 大功率附加场磁动力等离子体推力器阳极高效换热结构,属于空间飞行器电推进动力装置技术领域。本发明的阳极高效换热结构,内部安置用于增加冷却剂流动路线和湍流度的导流板;阳极内壁面为圆柱体,并增加导流板构建内流道,阳极水冷套为薄壁圆柱台,通过角接焊接完成冷却通道的外侧密封以及与内壁面的配合,最终构成整个冷却腔体;进出口管路通过焊接与阳极连接。本发明通过阳极内壁面、阳极水冷套和导流板之间的配合,实现阳极内部冷却通道的密封。这种阳极换热结构设计能在高温、高压下,保证阳极表面的温度较低,冷却剂温升较大,减小了整体推力器的尺寸和复杂度,易于拆装,解决了传统的阳极设计尺寸较大且换热效率较低的问题。
-
-
-
-
-
-
-
-
-