一种磁等离子体动力推力器阴极及其加工方法

    公开(公告)号:CN114623060A

    公开(公告)日:2022-06-14

    申请号:CN202210106583.0

    申请日:2022-01-28

    Abstract: 本发明提供了一种磁等离子体动力推力器阴极及其加工方法,该阴极结构为钨阴极主体段与紫铜连接复合结构,钨阴极主体段为中孔棒状结构,中孔结构形成推力器阴极的导气孔,该导气孔按照功能划分为气流缓冲腔、气体初电离腔和气体再电离腔,从前至后直径逐级增大,从而逐级增加热等离子体运动受限程度;紫铜连接件套设于阴极后端,为中孔圆台结构,前端直径与钨阴极主体段外径一致,前端至后端直径逐渐增大。在无氧环境下,利用激光3D打印技术,将钨‑钽‑氧化物粉末、紫铜粉末同时快速制备成型MPDT复合阴极。本发明解决了目前单孔阴极热等离子体轰击内壁效率低,启动时间较长,烧蚀严重的问题,以及现有MPDT机加工困难、加工易引入氧化等问题。

    一种高功率电推力器中离子能量在线测量系统及方法

    公开(公告)号:CN115184032B

    公开(公告)日:2024-12-13

    申请号:CN202210692958.6

    申请日:2022-06-17

    Abstract: 本发明公开了一种用于高功率电推进器离子能量测量系统,包括放电腔体内部的集成探头,以及放电腔体外部的数据采集系统;集成探头包括三探针探头和金属圆环探头;金属圆环探头为由金属丝绕制的不封闭的环状结构,三探针探头位于金属圆环探头内部,包括三根并排排布的金属丝;数据采集系统获取金属圆环探头内部产生的感应电势,得到电流密度,数据采集系统同时获取三探针探头的离子饱和电流、正偏压电位和悬浮电位,得到离子密度;根据电流密度和离子密度得到离子能量。本发明还公开了高功率电推力器中离子能量在线测量方法。本发明实现了离子能量的实时监测,能够推动电推力器能量耦合机理研究,优化推力器设计,促进高功率电推力器的快速发展。

    一种用于磁等离子体动力推力器的阴极

    公开(公告)号:CN112941386A

    公开(公告)日:2021-06-11

    申请号:CN202110112237.9

    申请日:2021-01-27

    Abstract: 一种用于磁等离子体动力推力器的阴极,在钨电极中添加纳米氧化物、合金元素、具有磁响应的金属元素。纳米氧化物在工作过程中,及时迁移、扩散到电极表面,以补充表面蒸发损失了的氧化物,电极表面上的氧化物颗粒容易引发放电,随后的放电过程容易在这些氧化物上发生。添加金属合金元素可以提高电极的密度、强韧性和热稳定性,还可以降低烧蚀,控制氧化物的扩散。添加具有磁响应的金属元素,可以提高电极的密度、强韧性、磁响应性和热稳定性,还可以降低烧蚀,控制氧化物的扩散。复合掺杂能够利用不同氧化物和金属元素之间的协同作用效应,有利于电极综合性能的提高。

    一种磁等离子体推力器射频加速装置和方法

    公开(公告)号:CN114992075A

    公开(公告)日:2022-09-02

    申请号:CN202210692071.7

    申请日:2022-06-17

    Abstract: 本发明公开了一种磁等离子体推力器射频加速装置,包括推力器腔体,丝杠支架,恒定磁场线圈组和射频天线组;射频天线组设于推力器腔体外部,包括四个沿推力器腔体周向排布的射频天线,第一、三射频天线,第二、四射频天线分别施加相位相同的射频电,第一、二射频天线中施加的射频电相位差为90°;恒定磁场线圈组包括若干个沿推力器腔体轴向排布的恒定磁场线圈,每个恒定磁场线圈中接入直流电;丝杠支架用于根据所需磁场位型实现恒定磁场线圈组沿推力器腔体轴向的位置调节。本发明还提供一种基于上述装置的磁等离子体推力器射频加速方法。本发明利用射频能量耦合机理加速等离子体中的离子,实现能量的高效注入,避免了加速过程中的电极腐蚀。

    大功率附加场磁动力等离子体推力器阴极螺旋换热结构

    公开(公告)号:CN111779645A

    公开(公告)日:2020-10-16

    申请号:CN202010455721.7

    申请日:2020-05-26

    Abstract: 本发明公开了一种大功率附加场磁动力等离子体推力器阴极螺旋换热结构,包括:阴极套筒内壁、阴极套筒外水冷套、进口管路和出口管路;其中,阴极套筒内壁与阴极套筒外水冷套通过焊接实现密封配合,阴极套筒内壁与阴极套筒外水冷套之间的区域构成冷却腔体;进口管路与阴极套筒内壁焊接,并且进口管路与冷却腔体相连通;出口管路与阴极套筒内壁焊接,并且出口管路与冷却腔体相连通;阴极套筒内壁的外表面上设有导流板,导流板在冷却腔体内引导冷却剂的流动。本发明确保阴极在高温大电流下可靠工作,同时通过引入导流板设计冷却流道,弥补了传统直通式阴极换热结构换热效率低、尺寸大、寿命短的缺陷。

Patent Agency Ranking