-
公开(公告)号:CN115158706A
公开(公告)日:2022-10-11
申请号:CN202210692945.9
申请日:2022-06-17
Applicant: 北京控制工程研究所
Inventor: 陈涛 , 刘国西 , 丁凤林 , 纪嘉龙 , 王梦 , 张兴国 , 陈芳浩 , 林倩 , 王振兴 , 李川 , 赵琦 , 王远 , 张阿莉 , 方忠坚 , 常磊 , 穆亚峰 , 李文硕
Abstract: 一种可在轨组装的分布式空间推进系统,包括至少两个元胞推进模块,分布在航天器上;所述元胞推进模块包括线路盒、结构单元、推进单元、机械接口、信息供电接口;结构单元内安装线路盒和推进单元,结构单元外设置机械接口和信息供电接口;机械接口包括磁吸耳片、防反耳片;磁吸耳片通过与航天器表面安装点位的相互吸引,用于安装粗定位;防反耳片上设置防反插导向孔,用于精确定位;信息供电接口包括连接器接口;供电信息接口通过总线接收到上位机指令。元胞推进模块提供航天器控制所需的控制力或控制力矩,对航天器进行姿态与轨道控制;当某个元胞推进模块推进剂耗尽时,可通过更换对推进系统进行更新,达到延长航天器使用寿命的目的。
-
公开(公告)号:CN111891394B
公开(公告)日:2022-01-04
申请号:CN202010803574.8
申请日:2020-08-11
Applicant: 北京控制工程研究所
Abstract: 本发明涉及一种卫星冷气推进系统流量传感器在轨标定方法,S1、对卫星冷气推进系统中的流量传感器和压力传感器进行加电预热并开启所述推进系统温控;S2、根据所述推进系统无流量工况下的流量传感器的输出确定流量传感器的零位并完成零位标定;S3、利用卫星冷气推进系统中的姿控推力器发送喷气脉冲,生成标准压力波信号,并采集流量传感器实际输出的流量波信号;S4、根据所述的标准压力波信号,通过反演计算流量传感器的理论流量值;S5、以计算的理论流量值为参照,对比流量传感器实际输出值,对流量传感器进行校准,得到转换系数标定值,利用该转换系数标定值完成流量传感器的在轨标定。
-
公开(公告)号:CN111912564A
公开(公告)日:2020-11-10
申请号:CN202010740158.8
申请日:2020-07-28
Applicant: 北京控制工程研究所
IPC: G01L27/00
Abstract: 本发明涉及一种用于微牛级推力测量系统的气动标定装置,包括充气阀、存储气瓶、补压电磁阀、气动容腔及控制单元;充气阀的出气口端连接至存储气瓶的进气口端,充气阀的进气口端连接至外部气源,存储气瓶的出气口端连接至补压电磁阀的进气口,补压电磁阀的出气口连接至气动容腔的进气口;补压电磁阀与控制单元连接,控制单元控制补压电磁阀的通断,为气动容腔充入气体,并由气动容腔喷出气体产生推力。本发明采用气动力方法产生标准弱力,消除电磁干扰,采用贮气、供气一体化小型化设计,解除供气管路与推力测量系统的耦合,消除管路干扰。
-
公开(公告)号:CN115158706B
公开(公告)日:2024-11-05
申请号:CN202210692945.9
申请日:2022-06-17
Applicant: 北京控制工程研究所
Inventor: 陈涛 , 刘国西 , 丁凤林 , 纪嘉龙 , 王梦 , 张兴国 , 陈芳浩 , 林倩 , 王振兴 , 李川 , 赵琦 , 王远 , 张阿莉 , 方忠坚 , 常磊 , 穆亚峰 , 李文硕
Abstract: 一种可在轨组装的分布式空间推进系统,包括至少两个元胞推进模块,分布在航天器上;所述元胞推进模块包括线路盒、结构单元、推进单元、机械接口、信息供电接口;结构单元内安装线路盒和推进单元,结构单元外设置机械接口和信息供电接口;机械接口包括磁吸耳片、防反耳片;磁吸耳片通过与航天器表面安装点位的相互吸引,用于安装粗定位;防反耳片上设置防反插导向孔,用于精确定位;信息供电接口包括连接器接口;供电信息接口通过总线接收到上位机指令。元胞推进模块提供航天器控制所需的控制力或控制力矩,对航天器进行姿态与轨道控制;当某个元胞推进模块推进剂耗尽时,可通过更换对推进系统进行更新,达到延长航天器使用寿命的目的。
-
公开(公告)号:CN115092425B
公开(公告)日:2024-06-25
申请号:CN202210555215.4
申请日:2022-05-19
Applicant: 北京控制工程研究所
IPC: B64G1/64
Abstract: 一种用于分布式可重构小卫星平台的加注接口推进和分离装置,包括十字推动装置、电机以及支撑结构;其中,支撑结构包括电机支架、第一结构板;所述十字推动装置为对称结构,十字推动装置的一条边的两端分别对称安装1个电机,另一条边的两端对称设置接口安装孔,用于分别连接气加注接口或液加注接口的活动端;电机分别安装于电机支架上,电机支架分别安装在可重构小卫星的第一结构板上。本发明安装方便,操作便捷,结合浮动断接机构可实现适用范围较宽的高精度调节。
-
公开(公告)号:CN113102767A
公开(公告)日:2021-07-13
申请号:CN202110292818.5
申请日:2021-03-18
Applicant: 北京控制工程研究所
Inventor: 张阿莉 , 刘锦涛 , 丁凤林 , 魏延明 , 宋飞 , 李文 , 杨家艾 , 刘捷 , 林倩 , 方忠坚 , 王远 , 陈芳浩 , 罗莉 , 王渊 , 武葱茏 , 纪嘉龙 , 刘国西 , 于洋 , 高永 , 李中 , 马彦峰
Abstract: 本发明涉及一种一体化制备板式表面张力贮箱的3D打印工艺方法,包括如下步骤:根据板式表面张力贮箱的结构特点,将贮箱壳体分成两部分,贮箱气口以及与其连接的贮箱壳体端部、气液分离器作为整体一进行3D打印,其余贮箱壳体、板式表面管理装置与贮箱液口作为整体二;在整体二上沿贮箱轴向方向设计板状筋支撑,将板状筋支撑与整体二一起作为一个整体进行3D打印,打印过程中贮箱轴向垂直与基板方向,基板上放置网格支撑及圆柱支撑,作为贮箱打印过程中的底部支撑;去除3D打印后的底部支撑以及板状筋支撑,并对两个打印件进行热处理;将两个打印件通过一次激光焊接得到板式表面张力贮箱;对得到的板式表面张力贮箱进行后期处理并加工贮箱接口。
-
公开(公告)号:CN111891394A
公开(公告)日:2020-11-06
申请号:CN202010803574.8
申请日:2020-08-11
Applicant: 北京控制工程研究所
Abstract: 本发明涉及一种卫星冷气推进系统流量传感器在轨标定方法,S1、对卫星冷气推进系统中的流量传感器和压力传感器进行加电预热并开启所述推进系统温控;S2、根据所述推进系统无流量工况下的流量传感器的输出确定流量传感器的零位并完成零位标定;S3、利用卫星冷气推进系统中的姿控推力器发送喷气脉冲,生成标准压力波信号,并采集流量传感器实际输出的流量波信号;S4、根据所述的标准压力波信号,通过反演计算流量传感器的理论流量值;S5、以计算的理论流量值为参照,对比流量传感器实际输出值,对流量传感器进行校准,得到转换系数标定值,利用该转换系数标定值完成流量传感器的在轨标定。
-
公开(公告)号:CN119043681A
公开(公告)日:2024-11-29
申请号:CN202411084779.X
申请日:2024-08-08
Applicant: 北京控制工程研究所
Abstract: 本发明涉及一种标定冷气推力器响应性能的无损检测系统及方法,该系统中,截止阀的进气口连接至外部气源,截止阀的出气口连接至减压阀的进气口,减压阀的出气口连接至第一压力传感器的进气口,第一压力传感器的出气口连接至第一密封装置的进气口,第一密封装置的出气口连接至冷气推力器的进气口,冷气推力器的喷口通过第二密封装置连接至气体收集器;真空泵通过金属软管连接至气体收集器,检测前真空泵起动,抽出气体收集器中的气体,建立冷气推力器工作所需的真空环境。本发明采用体外诊断式检测方法,测量局部气体压力变化,标定冷气推力器动态响应时间,通过标准化密封接口设计,提升检测效率,操作便捷可靠。
-
公开(公告)号:CN111912564B
公开(公告)日:2022-02-01
申请号:CN202010740158.8
申请日:2020-07-28
Applicant: 北京控制工程研究所
IPC: G01L27/00
Abstract: 本发明涉及一种用于微牛级推力测量系统的气动标定装置,包括充气阀、存储气瓶、补压电磁阀、气动容腔及控制单元;充气阀的出气口端连接至存储气瓶的进气口端,充气阀的进气口端连接至外部气源,存储气瓶的出气口端连接至补压电磁阀的进气口,补压电磁阀的出气口连接至气动容腔的进气口;补压电磁阀与控制单元连接,控制单元控制补压电磁阀的通断,为气动容腔充入气体,并由气动容腔喷出气体产生推力。本发明采用气动力方法产生标准弱力,消除电磁干扰,采用贮气、供气一体化小型化设计,解除供气管路与推力测量系统的耦合,消除管路干扰。
-
公开(公告)号:CN113102767B
公开(公告)日:2022-10-28
申请号:CN202110292818.5
申请日:2021-03-18
Applicant: 北京控制工程研究所
Inventor: 张阿莉 , 刘锦涛 , 丁凤林 , 魏延明 , 宋飞 , 李文 , 杨家艾 , 刘捷 , 林倩 , 方忠坚 , 王远 , 陈芳浩 , 罗莉 , 王渊 , 武葱茏 , 纪嘉龙 , 刘国西 , 于洋 , 高永 , 李中 , 马彦峰
Abstract: 本发明涉及一种一体化制备板式表面张力贮箱的3D打印工艺方法,包括如下步骤:根据板式表面张力贮箱的结构特点,将贮箱壳体分成两部分,贮箱气口以及与其连接的贮箱壳体端部、气液分离器作为整体一进行3D打印,其余贮箱壳体、板式表面管理装置与贮箱液口作为整体二;在整体二上沿贮箱轴向方向设计板状筋支撑,将板状筋支撑与整体二一起作为一个整体进行3D打印,打印过程中贮箱轴向垂直与基板方向,基板上放置网格支撑及圆柱支撑,作为贮箱打印过程中的底部支撑;去除3D打印后的底部支撑以及板状筋支撑,并对两个打印件进行热处理;将两个打印件通过一次激光焊接得到板式表面张力贮箱;对得到的板式表面张力贮箱进行后期处理并加工贮箱接口。
-
-
-
-
-
-
-
-
-