一种基于发动机智能关机的飞行器落速控制方法

    公开(公告)号:CN118689255A

    公开(公告)日:2024-09-24

    申请号:CN202410687666.2

    申请日:2024-05-30

    Abstract: 本发明公开了一种基于发动机智能关机的飞行器落速控制方法,属于航空航天控制领域,包括:根据基准弹道信息,获取飞行器飞行过程中飞行器的高度和马赫数变化范围,并设计发动机速度控制系统,判断飞行器与目标点在发射系x向的位置偏差是否小于飞行器发动机关机后能够继续飞行的关机距离,若是,发动机速度控制系统关机,实现飞行器的落速控制。本发明设计了适应推阻特性偏差的速度控制系统,使飞行器在发动机关机时刻稳定跟踪巡航速度;并根据目标点x向位置、飞行器x向位置以及关机距离,实现对飞行器发动机的智能关机,在推阻特性存在偏差的情况下,确保飞行器全程的稳定飞行,减少飞行器的落速散布,确保飞行器对目标点的有效打击。

    一种超音速大机动靶标的多约束双通道控制方法

    公开(公告)号:CN114200827B

    公开(公告)日:2023-06-23

    申请号:CN202111317701.4

    申请日:2021-11-09

    Abstract: 本发明提出一种超音速大机动靶标的多约束双通道控制方法,目的在于提供一种发动机工作条件受限且副翼舵偏无法同时满足持续大过载机动时俯仰与滚转通道同时控制的用舵量需求的大机动靶标,在飞行任务过程中的双通道控制方法。该方法首先将飞行任务分为四个阶段:爬升段、定高平飞段、机动段以及下降段,之后根据不同阶段的飞行任务对控制的要求,分别为大机动靶标的俯仰通道、滚转通道以及发动机控制设计控制方法,特别对于发动机需要正常工作的阶段,通过设置限幅确保发动机具备正常工作条件,对于大机动时副翼用舵量无法满足需求的问题,设计了一种分时控制的策略,确保大机动过程中指标满足要求同时副翼用舵量满足使用要求。

    一种基于能量匹配的飞行器爬升轨迹控制方法

    公开(公告)号:CN115657458A

    公开(公告)日:2023-01-31

    申请号:CN202211405829.0

    申请日:2022-11-10

    Abstract: 本发明公开了一种基于能量匹配的飞行器爬升轨迹控制方法,其包括以下步骤:S1:建立靶机纵向通道的传递函数;S2:设计控制系统的增稳回路,建立增稳回路的传递函数;S3:将增益Kω、Kα和Kny输入靶机控制系统,靶机根据增益Kω、Kα和Kny进行爬升飞行;S4:计算靶机实际飞行状态的马赫数Ma与基准弹道的马赫数的差值ΔMa,将差值ΔMa和马赫数Ma作为靶机动态限幅值的插值表,根据插值表调整不同高度位置的偏差限幅值,计算靶机爬升飞行段合理的爬升率,根据爬升率控制飞机爬升。本发明设计出靶机爬升飞行过程中的合理的爬升轨迹,计算出靶机爬升飞行段合理的爬升率,防止失速的发生。

    基于滑翔飞行器目标运动信息估计的在线中制导拦截方法

    公开(公告)号:CN115016294A

    公开(公告)日:2022-09-06

    申请号:CN202210887543.4

    申请日:2022-07-26

    Abstract: 本发明公开了一种基于滑翔飞行器目标运动信息估计的在线中制导拦截方法,所述基于滑翔飞行器目标运动信息估计的在线中制导拦截方法包括:S1:根据地基雷达对滑翔飞行器目标的量测信息,对所述目标运动信息进行估计,得到目标运动信息的估计结果;S2:根据所述目标运动信息的估计结果,采用随“拦截窗口”变化的滑模制导律,使拦截弹在所述目标进入“拦截窗口”时进行拦截。本发明能够使得拦截弹不始终紧随目标运动而机动,减小能耗的同时提升拦截成功率,实现良好的拦截态势。

    超声速飞行器燃料消耗最少的自适应爬升弹道设计方法

    公开(公告)号:CN118586102A

    公开(公告)日:2024-09-03

    申请号:CN202410687639.5

    申请日:2024-05-30

    Abstract: 本发明公开了一种超声速飞行器燃料消耗最少的自适应爬升弹道设计方法,涉及航天技术领域,根据超声速飞行器的动力学模型和发动机模型,得到以飞行器的飞行航程为自变量的动力学模型,建立该问题的最优控制模型;依据任务要求,设置初始爬升弹道的飞行航程,并在此航程下设计出一条较为合理的初始基准弹道;接下来对具有强非线性的动力学方程约束等约束条件进行凸化和离散技术处理,对处理后的问题进行凸优化求解,得到在设置的初始航程下燃油最省的爬升弹道轨迹。本发明解决了现有方法难以实现在超声速飞行器爬升段寻找一条耗油量最少的最优飞行轨迹的问题。

    靶标持续大过载机动时的防舵偏系统及其设计和使用方法

    公开(公告)号:CN116820114A

    公开(公告)日:2023-09-29

    申请号:CN202310385186.6

    申请日:2023-04-12

    Abstract: 本发明公开了靶标持续大过载机动时的防舵偏系统及其设计和使用方法,防舵偏系统包括靶标控制过载命令控制系统、靶标弹上控制系统和指令修正系统,靶标控制过载命令控制系统用于向靶标弹上控制系统输入靶标的靶标程控过载指令nyc1;靶标弹上控制系统用于靶标程控过载指令,并对靶标程控过载指令进行处理,得到靶标弹体发射的俯仰舵偏指令δc;指令修正系统用于接收俯仰舵偏指令δc,并对俯仰舵偏指令δc进行修正,得到修正系统的控制增益Kf,并通过控制增益Kf对靶标程控过载指令nyc1进行修正;本系统通过对靶标过载指令进行在线修复,从而确保靶标在持续大过载机动时舵偏不会陷入限幅值过深,能够有效保证靶标飞行安全,具有修复效果好、安全性高的特点。

    一种基于燃油流量预测结果的最优巡航弹道决策方法

    公开(公告)号:CN118468432A

    公开(公告)日:2024-08-09

    申请号:CN202410549471.1

    申请日:2024-05-06

    Abstract: 本发明公开了一种基于燃油流量预测结果的最优巡航弹道决策方法,包括:S1、给定导弹巡航高度范围,并按照预定间隔选取不同高度;S2、在巡航高度范围内,利用牛顿迭代法计算导弹在不同高度对应的巡航攻角;S3、根据计算的巡航攻角,引入修正推力,进而预测导弹在对应高度下的燃油流量;S4、将最小燃油流量对应的高度作为巡航弹道最优决策高度。本发明能够将内外不确定度因素的影响作为修正量引入决策最优巡航弹道的燃油流量计算中,在飞行中根据环境自适应地预测最优巡航高度,从而使得导弹在真实飞行过程中存在环境不确定度以及内部建模不确定度的情况下,也能在线寻找到此种情况下的最优巡航高度,从而决策出最优巡航弹道。

    基于大气密度变化的吸气式飞行器高度自适应控制方法

    公开(公告)号:CN118466199A

    公开(公告)日:2024-08-09

    申请号:CN202410549418.1

    申请日:2024-05-06

    Abstract: 本发明公开了基于大气密度变化的吸气式飞行器高度自适应控制方法,属于吸气式飞行器飞行控制领域,方法包括以下步骤:S1、建立飞行器的自动驾驶仪的第一~第五回路控制方法;S2、基于飞行器的自动驾驶仪的第一~第五回路控制方法,根据设置的不同高度及马赫数下密度反馈控制方法的控制参数,跟踪密度指令,完成高度的自适应调节。本发明在已知实际密度的情况下,通过建立自动驾驶仪的第一~第五回路控制方法,跟踪密度指令,从而在线实现高度的自适应调节,使得飞行器的飞行性能达到预期,解决了同一高度下,实际密度与标准大气密度不一致,从而导致飞行器飞行性能无法达到预期的问题。本发明工作方式简洁,控制器设计易操作。

Patent Agency Ranking