一种动力电池系统连接异常故障安全预警方法

    公开(公告)号:CN114492529B

    公开(公告)日:2022-12-13

    申请号:CN202210101995.5

    申请日:2022-01-27

    Abstract: 本发明涉及故障诊断技术领域,公开了一种动力电池系统连接异常故障安全预警方法,包括以下步骤:步骤1:解析得到原始电池信号数据;步骤2:清洗原始电池信号数据,得到初级电池信号数据;步骤3:选取得到目标电压数据;步骤4:采用差分平方和方法对目标电压数据进行特征提取,得到差分累积矩阵;步骤5:计算得出均值差分矩阵;步骤6:遍历均值差分矩阵的列向量,得出每个电芯的异常阈值上限;步骤7:遍历均值差分矩阵中电芯的特征向量,确认是否存在连接异常故障。本发明能够准确地识别出电池连接异常故障,能够有效降低故障误报率,能够在故障发生之初即快速锁定故障,故障判定效率较高。

    一种基于卷积神经网络的电池健康状态评估方法

    公开(公告)号:CN115144758A

    公开(公告)日:2022-10-04

    申请号:CN202210784827.0

    申请日:2022-06-29

    Abstract: 本发明涉及电池健康状态评估技术领域,公开了一种基于卷积神经网络的电池健康状态评估方法,包括以下步骤:步骤1:提取数个满充状态下的充电片段数据;步骤2:修正充电片段数据的SOC值;并计算每一个充电片段数据对应的SOH值;步骤3:截取各充电片段数据中相同电压区间内的单体电压数据作为输入值,并输入至初始评估模型中;所述初始评估模型为端到端的模型;步骤4:利用步骤3中的输入值,计算损失函数并进行反向传播以更新权重参数,直到迭代完成;迭代完成后获得标准评估模型;步骤5:将待评估电池的充电片段数据输入至标准评估模型中,输出得到待评估电池的SOH值。本发明能够准确评估车辆的电池健康状态,评估准确率和评估效率较高。

    在用新能源汽车的高风险车辆筛选方法及存储介质

    公开(公告)号:CN114462857A

    公开(公告)日:2022-05-10

    申请号:CN202210122447.0

    申请日:2022-02-09

    Abstract: 本发明涉及电动汽车评价方法领域,具体涉及在用新能源汽车的高风险车辆筛选方法及存储介质,方法包括:确定多个经验特征,计算多个经验特征之间的相关系数矩阵,对相关系数矩阵中相关系数值大于阈值的经验特征的占比进行统计,对经验特征进行主成分分析,得到主成分特征;获取运行中新能源汽车预设时间段内行驶的运行数据,根据累计行驶里程是否大于预设里程将新能源汽车的运行数据分成正样本和负样本;分析正样本与负样本的特征分布的总区分度,以区分度与阈值差值的最小值的主成分特征为筛选特征,将筛选特征标准化后的20%分位数作为特征筛选阈值;以筛车综合特征对待筛车的数据进行筛选。本发明能够有效筛选高风险在用新能源汽车。

    一种基于运行数据的动力电池电芯异常自放电的识别方法

    公开(公告)号:CN114430080A

    公开(公告)日:2022-05-03

    申请号:CN202210102011.5

    申请日:2022-01-27

    Abstract: 本发明涉及故障诊断技术领域,公开了一种基于运行数据的动力电池电芯异常自放电的识别方法,包括以下步骤:步骤1:解析得到基本电池信号数据;步骤2:清洗基本电池信号数据,得到标准电池信号数据;步骤3:由标准电池信号数据中选择充电状态数据;步骤4:按照提取策略对充电状态数据中每个电芯的电压数据进行特征提取,得到电芯特征值;步骤5:进行异常检测;步骤6:根据实时异常检测结果,判定电芯是否存在突发性自放电异常;根据长周期异常检测结果,判定电芯是否存在持续性自放电异常。本发明能够及时识别电芯异常自放电状况,保证识别的准确性和故障识别判定的高效率,并且,对自放电异常故障定位实现到电芯级别,识别的精度高。

    一种动力电池系统连接异常故障安全预警方法

    公开(公告)号:CN114492529A

    公开(公告)日:2022-05-13

    申请号:CN202210101995.5

    申请日:2022-01-27

    Abstract: 本发明涉及故障诊断技术领域,公开了一种动力电池系统连接异常故障安全预警方法,包括以下步骤:步骤1:解析得到原始电池信号数据;步骤2:清洗原始电池信号数据,得到初级电池信号数据;步骤3:选取得到目标电压数据;步骤4:采用差分平方和方法对目标电压数据进行特征提取,得到差分累积矩阵;步骤5:计算得出均值差分矩阵;步骤6:遍历均值差分矩阵的列向量,得出每个电芯的异常阈值上限;步骤7:遍历均值差分矩阵中电芯的特征向量,确认是否存在连接异常故障。本发明能够准确地识别出电池连接异常故障,能够有效降低故障误报率,能够在故障发生之初即快速锁定故障,故障判定效率较高。

    一种基于运行数据的动力电池电芯异常自放电的识别方法

    公开(公告)号:CN114430080B

    公开(公告)日:2022-07-29

    申请号:CN202210102011.5

    申请日:2022-01-27

    Abstract: 本发明涉及故障诊断技术领域,公开了一种基于运行数据的动力电池电芯异常自放电的识别方法,包括以下步骤:步骤1:解析得到基本电池信号数据;步骤2:清洗基本电池信号数据,得到标准电池信号数据;步骤3:由标准电池信号数据中选择充电状态数据;步骤4:按照提取策略对充电状态数据中每个电芯的电压数据进行特征提取,得到电芯特征值;步骤5:进行异常检测;步骤6:根据实时异常检测结果,判定电芯是否存在突发性自放电异常;根据长周期异常检测结果,判定电芯是否存在持续性自放电异常。本发明能够及时识别电芯异常自放电状况,保证识别的准确性和故障识别判定的高效率,并且,对自放电异常故障定位实现到电芯级别,识别的精度高。

    一种新能源汽车电池采样异常故障识别方法

    公开(公告)号:CN114415054A

    公开(公告)日:2022-04-29

    申请号:CN202210101511.7

    申请日:2022-01-27

    Abstract: 本发明涉及新能源汽车电池技术领域,具体涉及一种新能源汽车电池采样异常故障识别方法,包括以下步骤:获取新能源汽车电池组中各个电芯在放电状态时的电压数据;对电压数据进行特征提取,形成距离累积矩阵;对距离累积矩阵中每个电芯的特征向量进行遍历,获取各个电芯的第一分位数和第二分位数;根据各个电芯的第一分位数和第二分位数,分别获取电池组整体的第一全局分位数和第二全局分位数,并以此对距离累积矩阵中每个电芯的特征向量进行遍历,判定此时刻是否发生采样异常;当采样异常在单位时间内累计发生次数达到设定次数时,则判定确实发生采样异常故障,并返回标记时刻及发生故障的电芯号。本发明解决了采样异常故障误报问题多的问题。

Patent Agency Ranking