-
公开(公告)号:CN117429626A
公开(公告)日:2024-01-23
申请号:CN202311366846.2
申请日:2023-10-20
Applicant: 北京控制工程研究所
Abstract: 本发明涉及一种微流量贮存供给系统及方法,包括:气体贮存与控制模块、推进剂贮存供给模块、微流量控制模块;气体贮存与控制模块将输入的高压气体经过机械式减压部件调节至推进剂贮存供给模块所需的气体压力,为推进剂贮存供给模块存储的液体推进剂提供恒定的输出压力;推进剂贮存供给模块在恒定的输出压力下做活塞运动,将存储的液体推进剂排出至微流量控制模块;微流量控制模块为系统提供预设流阻,调节液体推进剂的输出达到十纳升每秒量级的超微流量。本发明能够为小型空间飞行器推进系统贮存一定容量的液体推进剂,并提供纳升每秒量级的流量输出。
-
公开(公告)号:CN110413015B
公开(公告)日:2023-08-01
申请号:CN201910568501.2
申请日:2019-06-27
Applicant: 北京控制工程研究所
Inventor: 刘旭辉 , 魏延明 , 龙军 , 卢国权 , 杨灵芝 , 陈明阳 , 汪旭东 , 官长斌 , 陈君 , 沈岩 , 攸兴杰 , 付拓取 , 张伟 , 宋新河 , 张良 , 李恒建 , 王焕春
Abstract: 本发明公开了一种基于闭环控制的微牛量级微推力动态测试台及测试方法,该微推力动态测试台包括:摆臂、标定线圈、标定磁铁、标定控制器、位移传感器、位移传感器卡件、PID闭环控制模块、位移计控制器、阻尼机构、驱动力线圈、挠性轴机构和底座;摆臂通过挠性轴机构安装在底座上;标定线圈缠绕在标定磁铁外侧、与标定控制器连接;驱动力线圈、位移计控制器和标定磁铁依次设置在摆臂上;驱动力线圈、位移计控制器和位移传感器分别与PID闭环控制模块连接;阻尼机构与摆臂靠近驱动力线圈的一端间隔设置,摆臂的另一端上设置有待测推力器安装工位。通过本发明能够有效提升微推力动态测试台的固有频率,实现微牛量级的微推力动态测试。
-
公开(公告)号:CN111365507A
公开(公告)日:2020-07-03
申请号:CN202010301348.X
申请日:2020-04-16
Applicant: 北京控制工程研究所
Inventor: 官长斌 , 张美杰 , 南柯 , 姚兆普 , 扈延林 , 毛威 , 王平 , 蔡坤 , 范旭丰 , 曾昭奇 , 于金盈 , 任凯 , 李伟 , 纪孟轩 , 李恒建 , 张良 , 张志伟 , 王建 , 李长维
Abstract: 一种基于弹簧管位移放大的小型化高压压电比例阀,包括:压电驱动组件、弹性放大组件、外罩、阀体和出气接头。本发明利用弹性放大组件将压电驱动组件的位移放大为阀口开度,实现了位移放大功能;同时将弹性放大组件与阀体焊接在一起,实现了高压动密封功能。压电驱动组件实现了两个压电陶瓷的位移叠加,增大了压电驱动组件的原始位移输出。本发明的压电比例阀具有小型化、轻质化、寿命长和耐高压特点,特别适用于高气压下的比例流量控制场合。
-
公开(公告)号:CN110715697A
公开(公告)日:2020-01-21
申请号:CN201910913154.2
申请日:2019-09-25
Applicant: 北京控制工程研究所
Abstract: 本发明提供一种带有密封结构的适用于微克级流量的流量测量组件,包括测量元件、陶瓷电连接器、流道组件。测量元件用于感受被测流体流量,将流量信号转化为变化的电阻阻值信号,进而转化为电压模拟量的变化;陶瓷电连接器用于承载测量元件,通过陶瓷材料上的导电薄膜将测量元件所测信号输出,同时与流道组件配合,起到承压与密封作用;流道组件承载被测流体,形成层流换热通道,同时跟陶瓷电连接器配合。本发明结构简单、可靠性高、尺寸小、重量轻,适合于微克级气体的高精度测量。
-
公开(公告)号:CN106641391B
公开(公告)日:2019-03-26
申请号:CN201611104698.7
申请日:2016-12-05
Applicant: 北京控制工程研究所
Abstract: 一种快速响应螺线管电磁阀,主要由入口接头(1)、外导磁体(2)、回复弹簧(3)、回复弹簧垫圈(4)、阀体(5)、线圈(6)、衔铁组件(7)、密封弹簧垫圈(8)、阀座(9)构成。本发明通过增加一个回复弹簧(3),并与衔铁组件(7)之间设置一个空程,可以使得回复弹簧(3)在不影响电磁阀开启的情况下,吸收衔铁开启运动过程中的动能,转化为加速电磁阀关闭的弹性势能,从而实现电磁阀开启响应时间和关闭响应时间的同时提高。此外,衔铁组件(7)采用两端悬浮式无摩擦结构,在进一步提高响应时间的同时,使电磁阀具有长寿命的优点。
-
公开(公告)号:CN106015685B
公开(公告)日:2018-09-18
申请号:CN201610587115.4
申请日:2016-07-22
Applicant: 北京控制工程研究所
IPC: F16K31/02
Abstract: 一种适用于高压气体的压电比例调节阀,包括入口端盖组件、双级柔性铰链位移放大式压电驱动器、阀体、导向片弹簧压环、导向片弹簧、阀杆和阀座;阀体为两端直径不同的空心圆柱体,直径小的圆柱体两端内壁加工有台阶,台阶上设置有导向片弹簧和导向片弹簧压环,双级柔性铰链位移放大式压电驱动器一侧与阀杆连接,阀杆穿过导向片弹簧后插入阀座中实现密封,双级柔性铰链位移放大式压电驱动器的电缆通过入口端盖组件与外部驱动电压连接,入口端盖组件与双级柔性铰链位移放大式压电驱动器另一侧连接,入口端盖组件与阀体、阀座与阀体通过电子束焊接方式连接在一起。本发明的压电比例调节阀质量轻、流量调节范围大、精度高、抗力学环境能力强。
-
公开(公告)号:CN107461515A
公开(公告)日:2017-12-12
申请号:CN201710556861.1
申请日:2017-07-10
Applicant: 北京控制工程研究所
IPC: F16K11/044 , F16K11/056 , F16K27/02 , F16K31/02
CPC classification number: F16K31/005 , F16K11/044 , F16K11/056 , F16K27/0245
Abstract: 本发明公开了一种小型直驱式全金属密封压电比例阀,采用压电直驱的方式,无需采用放大结构,从而保证了压电驱动器的优点即输出力大、定位精度高的优点,压电驱动器的定位精度可高达在nm量级,此设计与其他发明比,有着可在较宽压力范围内进行高精度、高分辨率的比例流量控制,此外,由于是直驱方式,也可以通过增加密封通过的直径,从而降低所需开启高度的方式来进一步减少压电驱动器长度,实现阀门的小型化。
-
公开(公告)号:CN106015685A
公开(公告)日:2016-10-12
申请号:CN201610587115.4
申请日:2016-07-22
Applicant: 北京控制工程研究所
IPC: F16K31/02
CPC classification number: F16K31/004
Abstract: 一种适用于高压气体的压电比例调节阀,包括入口端盖组件、双级柔性铰链位移放大式压电驱动器、阀体、导向片弹簧压环、导向片弹簧、阀杆和阀座;阀体为两端直径不同的空心圆柱体,直径小的圆柱体两端内壁加工有台阶,台阶上设置有导向片弹簧和导向片弹簧压环,双级柔性铰链位移放大式压电驱动器一侧与阀杆连接,阀杆穿过导向片弹簧后插入阀座中实现密封,双级柔性铰链位移放大式压电驱动器的电缆通过入口端盖组件与外部驱动电压连接,入口端盖组件与双级柔性铰链位移放大式压电驱动器另一侧连接,入口端盖组件与阀体、阀座与阀体通过电子束焊接方式连接在一起。本发明的压电比例调节阀质量轻、流量调节范围大、精度高、抗力学环境能力强。
-
公开(公告)号:CN104132767B
公开(公告)日:2016-06-01
申请号:CN201410360832.4
申请日:2014-07-25
Applicant: 北京控制工程研究所
IPC: G01L9/04
Abstract: 本发明提供一种基于MEMS的压力传感器,包括基座、下盖、支架、压力敏感芯体、绝缘垫、信号处理电路板、外壳、电连接器、以及引线板。压力敏感芯体采用溅射薄膜应变式原理,其作用是感应被测介质的压力,输出与压力信号变化成比例的电信号;信号处理电路是一种高度集成的传感器信号处理电路,用于给压力敏感芯体供电,同时对压力敏感芯体输出的信号进行放大、校准和温度补偿功能,实现高精度的信号调理;基座和外壳提供与管路的接口,并将压力敏感芯体与信号处理线路板进行封装。本发明的压力传感器为一体化结构,可靠性高,尺寸小,重量轻,适合于微小超高压冷气推进系统高压气瓶压力的精确测量。
-
公开(公告)号:CN113191097B
公开(公告)日:2023-07-14
申请号:CN202110448726.1
申请日:2021-04-25
Applicant: 北京控制工程研究所
Inventor: 刘旭辉 , 张伟 , 龙军 , 王平 , 蒋庆华 , 官长斌 , 高晨光 , 何英姿 , 付拓取 , 夏继霞 , 苏高世 , 赵春阳 , 苏龙斐 , 宋新河 , 张良 , 李恒建 , 赵立伟 , 张志伟 , 王焕春
IPC: G06F30/28 , G06F30/17 , B64G1/40 , G06F113/08 , G06F119/08 , G06F119/14
Abstract: 一种固体冷气微推进模块在轨应用方法,属于空间推进技术领域。本发明常规采用线性化平均推力计算轨控时间的问题,通过在轨标定模型,确定模块的推力输出模型,通过非线性规划优化方法计算获得轨控所需要的精确时间;可广泛应用于固体冷气微推进模块高精度轨道机动控制、在轨标定。
-
-
-
-
-
-
-
-
-