一种文冠果油的制备方法
    132.
    发明授权

    公开(公告)号:CN105238544B

    公开(公告)日:2021-05-14

    申请号:CN201510769104.3

    申请日:2015-11-12

    Abstract: 一种文冠果油的制备方法属于植物油脂提取加工技术领域,该方法包括以下步骤:(1)将文冠果脱皮后粉碎,然后调节水分进行微波处理,微波处理后加水混合得混合液;(2)将混合液高压均质后进行磁化处理,然后向磁化后的混合液中先后加入多糖酶和蛋白酶进行分步酶解,酶解后离心分离得游离油、水解液、乳状液和残渣;(3)将水解液与乳状液合并得酶解液,向酶解液中加入乙醇后进行冷浴处理;(4)向乙醇冷浴处理后的酶解液中通入高压蒸汽进行热处理并回收乙醇,然后进行离心分离得游离油;本发明将微波技术、磁化技术、酶解技术及高压技术有机的结合起来,应用于文冠果油的制备,制得的文冠果油营养价值高、品质好,适用于工业化生产。

    一种利用豆渣制备膳食纤维的方法

    公开(公告)号:CN112493496A

    公开(公告)日:2021-03-16

    申请号:CN202011376750.0

    申请日:2020-11-30

    Abstract: 本发明公开了一种利用豆渣制备膳食纤维的方法,属于膳食纤维粉加工技术领域,本发明为了解决如何提高豆渣中提取的膳食纤维的含量的技术问题,本发明提供的利用豆渣制备膳食纤维的方法,具体步骤是将豆渣经过石磨粗磨、分离式磨浆机除渣,胶体磨细化然后过滤,在通过酶解、射流空化机处理、膜过滤、高压均质、真空低温浓缩和冷冻干燥生产大豆膳食纤维粉。本方法生产的大豆膳食纤维粉可溶性膳食纤维含量可达到92.68%‑96.47%,利用大豆分离蛋白及豆腐生产废渣为原料,提高了豆渣的利用率及价值,设备投入小,可以实现连续自动化生产,生产出豆渣粉溶解性和稳定性好,富含膳食纤维,口感细腻,消化吸收率高。

    一种槲皮素豆乳的制备方法

    公开(公告)号:CN111642567A

    公开(公告)日:2020-09-11

    申请号:CN202010448133.0

    申请日:2020-05-25

    Abstract: 本发明公开了一种槲皮素豆乳的制备方法,属于豆乳加工技术领域。本发明解决了现有槲皮素添加到豆乳中会产生沉淀,且会发生氧化降解等问题。本发明将槲皮素包埋在纳米乳液中,然后添加在豆乳中,并利用高压均质技术将槲皮素纳米乳液和豆乳进行混合,最终得到均一稳定的槲皮素豆乳。其中利用高压均质机的压力及空穴效应将槲皮素纳米乳液与豆乳混合的同时,还能够降低豆乳的的粒径,增加豆乳的口感,促进豆乳在人体内的吸收。

    一种富含膳食纤维发酵豆汁的制备方法

    公开(公告)号:CN110692728A

    公开(公告)日:2020-01-17

    申请号:CN201911070942.6

    申请日:2019-11-05

    Abstract: 本发明公开了一种富含膳食纤维发酵豆汁的制备方法,涉及发酵豆汁加工技术领域;步骤包括:原材料筛选、大米、糯米和大豆浸泡、磨浆、高压均质、微波杀菌、接种发酵、调配、均质处理、无菌灌装包装进行加工生产。本发明发酵豆汁,发酵豆汁成品细腻,口感好;发酵效率高,富含膳食纤维,营养价值高。

    一种高纤维豆奶的制备方法

    公开(公告)号:CN110692727A

    公开(公告)日:2020-01-17

    申请号:CN201911070927.1

    申请日:2019-11-05

    Abstract: 本发明公开了一种高纤维豆奶的制备方法,包括如下步骤:1)将脱皮大豆和水加入到空化射流设备中处理;2)经过空化射流设备处理后的豆奶先经过闪蒸脱臭;3)添加混合纤维粉,大豆膳食纤维、低聚果糖和菊粉,经过高压均质,高温瞬时灭菌,无菌灌装成成品。本发明的空化射流设备可以同时代替泡豆,磨浆和煮浆,同时具有灭酶作用,设备投入小,可以实现连续自动化生产,生产出豆奶无异味无豆腥味,富含膳食纤维,口感好,蛋白消化吸收率高。

    一种冷冻分离后的重相米糠油与共轭亚油酸酯交换制备功能性油脂的方法

    公开(公告)号:CN110541005A

    公开(公告)日:2019-12-06

    申请号:CN201910869716.8

    申请日:2019-09-16

    Abstract: 本发明提供一种冷冻分离后的重相米糠油与共轭亚油酸酯交换制备功能性油脂的方法。本方法取白土作为结晶剂,梯度冷冻离心使米糠油饱和脂肪酸富集,利用Novozym 435脂肪酶酶促共轭亚油酸进行酯交换,制备了功能性油脂,解决了有机溶剂的回收问题,提高米糠的高值化。随着不饱和程度的提高,不饱和脂肪酸配合物的热稳定性会逐渐降低,再加上结晶温度和条件等因素的影响,就可以实现混合脂肪酸中不同结构组分得以分离、富集。选择梯度冷冻离心分提米糠油的工艺条件,结果表明制备功能性油脂的最佳条件:脂肪酶的添加量9%、反应温度60℃和反应时间24h,得到的油脂富含植物甾醇、谷维素和生育酚,CLA酯化率38%。

    一种水酶法残渣制取水溶性膳食纤维的方法

    公开(公告)号:CN106072674B

    公开(公告)日:2019-11-29

    申请号:CN201610537542.1

    申请日:2016-07-09

    Abstract: 一种水酶法残渣制取水溶性膳食纤维的方法属于食品加工技术;该方法包括以下步骤:(1)将经过水酶法提取大豆油脂后离心分离得到的残渣,进行烘干、过筛处理,用残渣粉试样置于HD‑2冷等离子体改性设备腔内,进行等离子处理;(2)将步骤(1)等离子处理后对残渣加入纤维素酶进行酶解处理,将酶解后的混合液进行真空浓缩,将浓缩活动混合液用乙醇进行醇洗,将醇洗后的沉淀物真空冻干,即为可溶性大豆膳食纤维;本,操作控制方便,大大减少酸碱用量不但降低生产成本,减少污染,提取时间短,取效率高,得到的水溶性大豆膳食纤维纯度高。

    一种在超临界CO2环境下电催化辅助红花籽油制备共轭亚油酸的方法

    公开(公告)号:CN110484929A

    公开(公告)日:2019-11-22

    申请号:CN201910873459.5

    申请日:2019-09-17

    Abstract: 本发明提供一种在超临界CO2环境下电催化辅助红花籽油制备共轭亚油酸的方法。共轭亚油酸具有抗癌、降低脂肪积累等功效。目前,共轭亚油酸主要是利用金属催化剂在高温条件下制备得到的。电化学催化辅助技术是制备富含共轭亚油酸油脂的一种新方法,其利用自制电催化反应釜进行反应,向其中加入N2和CO2,电解产生的氢质子相比于氢气更容易与催化剂结合,达到活化的目的,从而提高反应速率,反应时间缩短了5h,并且在超临界CO2环境下,反应温度仅为120℃,CLA产率为89%,更加适用于工业化生产,为电化学辅助催化富含共轭亚油酸的红花籽油提供了新的方法和途径。

Patent Agency Ranking