-
公开(公告)号:CN114751748A
公开(公告)日:2022-07-15
申请号:CN202210269742.9
申请日:2022-03-18
Applicant: 燕山大学
IPC: C04B35/528 , C04B35/645
Abstract: 本申请提供高强致密的类洋葱碳块材及其制备方法。具体地,本申请提供了一种高强致密的类洋葱碳块材,其中所述高强致密的类洋葱碳块材由类洋葱结构基元构成,密度为1.9‑2.3g/cm3。本申请还提供一种制备本申请高强致密的类洋葱碳块材的方法。本申请高强致密的类洋葱碳块材中的类洋葱碳结构基元尺寸小于100nm,烧结致密,因此具有高强度、高密度以及高导电性,可以替代石墨材料进行应用。
-
公开(公告)号:CN112374500B
公开(公告)日:2022-04-01
申请号:CN202011048048.1
申请日:2020-09-29
Applicant: 燕山大学
IPC: C01B32/949 , B82Y40/00
Abstract: 本发明涉及一种等轴晶纳米碳化钨粉末的制备方法。本发明的方法包括以下步骤:(1)将钨源、可食用碳源溶解于水中形成溶液,将所述溶液干燥,得到胶状前驱体;并且(2)将所述胶状前驱体在绝对压强低于1.0×10‑2Pa的真空度下在1250~2000℃的温度下反应,得到等轴晶纳米碳化钨粉末。本发明的方法采用安全无毒且低成本的可食用碳源,获得了高纯度、纳米级尺寸的、等轴晶碳化钨粉末。与传统的方法相比,本发明的方法具有工艺简单、绿色环保、成本低廉和安全性高等优点,而且还可表现出优异的组织控制精度以及良好的工艺稳定性和可重复性。
-
公开(公告)号:CN110436928B
公开(公告)日:2021-11-23
申请号:CN201910790880.X
申请日:2019-08-26
Applicant: 燕山大学
IPC: C04B35/563 , C04B35/622
Abstract: 本发明公开了高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法,方法为:以纳米碳化硼粉体为原料(1)通过放电等离子体烧结方法合成纳米孪晶碳化硼块体;(2)通过热压烧结方法合成纳米孪晶碳化硼块材;(3)通过高温高压合成纳米孪晶碳化硼块材,合成得到的纳米孪晶碳化硼块体材料的硬度为30‑55GPa,断裂韧性为4.0‑8.0 MPa m1/2,抗弯曲强度为500‑850MPa,孪晶宽度为1‑100nm,晶粒粒径为10nm‑10μm,致密度95‑100%,具有更高的致密度、比强度、高硬度和高断裂韧性的特性,作为一种超硬材料,可应用在轻质装甲、防弹装备,切削工具和钻头、耐高温结构部件等方面,具有广阔的应用前景。
-
公开(公告)号:CN113493202A
公开(公告)日:2021-10-12
申请号:CN202010261332.0
申请日:2020-04-03
Applicant: 燕山大学
Inventor: 田永君 , 徐波 , 周向锋 , 胡文涛 , 高宇飞 , 李子鹤 , 应盼 , 刘笑笑 , 于栋利 , 何巨龙 , 柳忠元 , 聂安民 , 王霖 , 高国英 , 陈俊云 , 赵智胜
IPC: C01B32/26
Abstract: 本发明涉及金刚石复相材料及其制备方法。本发明以洋葱碳为原料,通过高温高压的合成方法制备出一种包含3C、2H、4H、6H、8H、10H、9R、15R、21R多种类型金刚石相的新型金刚石复相块材。在块材的晶粒内可以发现2H、3C、4H、6H、8H、9R、10H、15R、21R中的两种或两种以上类型的金刚石相,其中3C型金刚石具有超细纳米孪晶组织结构,孪晶宽度1‑15nm。本发明所公开的金刚石复相块材内部晶粒尺寸为2‑80nm,其维氏硬度为150‑260GPa,断裂韧性为12‑30MPa·m1/2。这种金刚石复相块材在精密与超精密加工领域、拉丝模、磨料磨具及特种光学元件等领域具有广阔的应用。
-
公开(公告)号:CN110372394A
公开(公告)日:2019-10-25
申请号:CN201910791250.4
申请日:2019-08-26
Applicant: 燕山大学
IPC: C04B35/5833 , C04B35/622 , C04B35/645
Abstract: 本发明涉及一种高塑性高弹性氮化硼致密陶瓷及其制备方法,制备方法包括以下步骤:A)装料:称量一定质量的洋葱结构的球形氮化硼纳米粉体,预压成型,将预压成型后的预压坯放入烧结模具;B)烧结:将步骤A)中的预压坯连同烧结模具一起放入放电等离子烧结设备或者热压烧结设备中烧结;C)出料:待设备内温度自然冷却至室温后取出模具,退模获得高塑性高弹性氮化硼致密陶瓷块体。本发明通过烧结洋葱结构的球形氮化硼纳米粉体,获得高强度高塑性的氮化硼陶瓷。
-
公开(公告)号:CN103811653B
公开(公告)日:2017-01-25
申请号:CN201410027252.3
申请日:2014-01-21
Applicant: 燕山大学
IPC: H01L37/00
Abstract: 一种多钴p型填充方钴矿热电材料,它是一种分子式为EzFe2-xCo2+xSb12-yMy的物质,其中E是La、Ce、Pr、Nd、Eu、Yb、Ba、Sr、Ca中的一种或多种,M为Ge或Sn的复合掺杂物,并且0.2≤z≤0.8,0≤x≤1,0<y≤0.5。本发明制备方法包括以下步骤:将E、Fe、Co、Sb和M等各种原料,放入石英管中密封,置入炉中熔融,然后淬火形成固态材料,将淬火后的块体取出,再次置于石英管中加热退火;将退火后的块体制成粉末;将粉末加压烧结为所需形状的块体,将烧结后的块体加热退火。本发明可使具有低热膨胀系数的EzFe2-xCo2+xSb120≤x≤1)基方钴矿材料具有高的热电性能(ZT接近或大于1)。
-
公开(公告)号:CN104209062B
公开(公告)日:2016-07-06
申请号:CN201310188507.X
申请日:2013-05-20
Applicant: 燕山大学
IPC: B01J3/06
Abstract: 本发明涉及一种超高硬度纳米孪晶金刚石块体材料及其制备方法。具体地,本发明公开了一种含高密度孪晶的纳米晶金刚石块体材料及其合成方法,以无金刚石核的纳米球形碳(洋葱结构碳,以下简称无核洋葱碳)颗粒(优选地,粒径为5-70nm)为原料,通过高温高压合成了纳米孪晶金刚石块体。所得到的纳米孪晶金刚石块的体积为1-2000mm3;维氏硬度为155-350GPa;努普硬度为140-240GPa;孪晶宽度为1-15nm。本发明与现有技术相比,所获得的纳米孪晶金刚石块体具有远高于金刚石单晶体和超硬多晶金刚石的硬度(金刚石单晶的维氏硬度仅为100GPa左右,超硬多晶金刚石的最高努普硬度为140GPa),其最高的维氏硬度达到350GPa、最高的努普硬度达到240GPa。纳米孪晶金刚石块体在地质钻探、高速切削和精密与超精密加工等机械加工领域、磨料磨具和拉丝模及特种光学器件等领域具有广阔的应用前景。
-
公开(公告)号:CN102650005B
公开(公告)日:2015-11-25
申请号:CN201110051407.3
申请日:2011-02-28
Applicant: 燕山大学
Abstract: 本发明公开一种高性能致密化填充方钴矿热电材料的高压合成制备方法,其特征是:1)按照拟合成的填充方钴矿热电材料的化学配比,取相应剂量的反应原料混合并冷压成型;2)第一步高压合成,压力范围1-6GPa,反应温度700-900℃,时间10-120分钟,将原料融合并初步反应生成过渡产物,冷却卸压后将所得产物研磨均匀并冷压成型;3)第二步高压合成,压力范围1-5Gp,反应温度550-650℃,时间30-600分钟,冷却卸压后将合成出的填充方钴矿材料研磨、酸洗、干燥,并冷压成型;4)采用高压烧结或电火花放电烧结技术,得到最终的块体热电材料。所得产物密度高,具有良好的机械加工性能,热电性能优越,无量纲热电优值(ZT)普遍高于1,同时本发明工艺简单,耗时短,节约能源,具有优良的产业化生产及应用前景。
-
公开(公告)号:CN102277521B
公开(公告)日:2013-03-27
申请号:CN201110228615.6
申请日:2011-08-11
Applicant: 燕山大学
Abstract: 一种室温高韧性单相固溶体镁稀土基合金,其化学成分为Mg-xRE-y(Zn+Sc)-z(Ag+Zr).其中0.5≤x≤3.0,0.1≤y≤1.5,0.01≤z≤1.0(wt.%),稀土元素包括Gd、Y、Dy、Er、Tm和Lu;其制备方法主要是,将上述原料加入自动控温电阻炉中,采用六氟化硫和氩气混合气体保护,熔炼温度为680-800℃,在650-770℃浇注到钢模中,钢模要在500-600℃下充分预热,浇注后,在650-750℃炉中保温30-120分钟,然后用水冷却至室温。本发明的单相固溶体镁稀土基合金晶粒尺寸小,延展性好,室温延伸率超过20%,力学性能和加工性能优良,耐腐蚀性能优异。
-
公开(公告)号:CN119530985A
公开(公告)日:2025-02-28
申请号:CN202411714647.0
申请日:2024-11-27
Applicant: 燕山大学
Abstract: 多级序构TiAl单晶的强韧化调控方法,属于金属材料强韧化技术领域。本发明提供了一种多级序构TiAl单晶的强韧化热压调控方法,通过控制温度、压力和保温时间等,获得γ相细化的多级序构TiAl单晶。提供一种多级序构TiAl单晶的强韧化等温热处理调控方法,通过控制真空度、温度和保温时间等,获得α2相细化的多级序构TiAl单晶。提供一种将热压和等温热处理结合的调控方法,获得全片层细化的多级序构TiAl单晶。本发明调控后的多级序构TiAl单晶在力学性能上有较大提升,屈服强度为653~1006MPa,伸长率为13.6~24.5%。
-
-
-
-
-
-
-
-
-