-
公开(公告)号:CN109889277B
公开(公告)日:2021-09-21
申请号:CN201910082944.0
申请日:2019-01-25
Applicant: 中国科学院光电技术研究所
Abstract: 本发明公开了一种轻小型无热化量子通信地面站望远镜光学系统,由主镜(1)、次镜(2)、电动偏转反射镜(3)、分光棱镜一(4)、激光通信缩焦镜(5)、激光通信模块(6)、分光棱镜二(7)、精跟踪探测器(8)、量子通信准直镜(9)和量子通信模块(10)构成。整个系统包括主镜、次镜和镜筒等结构材料采用同种金属材料,为铝合金或铍铝合金,环境温度变化无须温度调焦机构即可实现各分系统焦面与传感器重合,实现无热化。同时,主镜采用轻质金属材料,无须额外支撑结构,可以实现大相对孔径,从而缩短筒长,减轻重量。整个光学系统通过上述方式同时实现了激光通信和量子通信。该光学系统可以应用于地平式或极轴式地面站望远镜中。
-
公开(公告)号:CN112882225A
公开(公告)日:2021-06-01
申请号:CN202110045977.5
申请日:2021-01-14
Applicant: 中国科学院光电技术研究所
Abstract: 本发明公开了一种大行程柔性二维运动平台,包括:固定基座(4);与所述固定基座(4)同轴放置的运动平台(1);以及放置于运动平台(1)和固定基座(4)之间的柔性虎克铰链(2)和线性作动器(3);所述线性作动器(3)共四个呈对称均匀分布;所述柔性虎克铰链(2)位于四个线性作动器(3)中间;所述线性作动器(3)和柔性虎克铰链(2)两端通过螺钉分别与运动平台(1)下端面和固定基座(4)上端面连接;所述固定基座(4)上分布有螺纹安装孔,用于与外部结构相连;所述柔性虎克铰链(2)包括上柔性铰链支座(2‑1),中间运动块(2‑2),以及下柔性铰链支座(2‑3),与运动平台(1)与固定支座均采用螺钉连接;所述线性作动器(3)共四个,与运动平台(1)和固定支座均采用螺钉连接;该平台适合高精度大行程角度的运动应用。
-
公开(公告)号:CN107172394B
公开(公告)日:2020-07-10
申请号:CN201710378402.9
申请日:2017-05-25
Applicant: 中国科学院光电技术研究所
Abstract: 本发明公开了一种基于无线实时视频传输的划圆检测装置,针对当前固定于光电捕获跟踪瞄准设备主镜筒之上的划圆检测装置,输出的视频信息到图像监视器之间的通信方式和整个划圆检测装置供电的方式是通过有线连接,电缆很长很重,对划圆检测装置结构固定的稳定性带来很大的影响。本发明提出将划圆检测装置输出的视频信息转换成无线信号进行传输、系统供电采用电池供电,能大幅改善当前设备中划圆检测装置结构的稳定性问题。除此之外,本发明能解决转台运行过程中电缆缠绕的安全问题,并且支持移动设备,使工作空间不受限制,大大提高了光学装调工作的便利性,更适用于工程化应用。
-
公开(公告)号:CN107894326B
公开(公告)日:2020-04-03
申请号:CN201711038978.7
申请日:2017-10-31
Applicant: 中国科学院光电技术研究所
IPC: G01M11/02
Abstract: 本发明涉及了一种基于多波长相位调制的拼接主镜共相误差探测方法,可用于拼接望远镜主镜的共相误差探测。本方法通过给拼接主镜的一个子镜添加特定的相位调制,用探测器测得系统的一组点扩散函数PSF值,对这组PSF值进行处理得到拼接镜在特定波长下的部分相位差,再在不同波长情况下重复上述过程得到多个部分相位差,通过对多个波长情况下的各个部分相位差进行处理得到拼接镜成像系统的共相误差。本方法使用空间相位调制器件对拼接望远镜主镜的一个子镜进行相位调制,算法恢复共相误差不需要迭代计算,能快速精准的探测系统的共相误差,同时由于本方法利用了多波长信息,克服了2π模糊的影响,从而极大的提高了共相误差的探测范围和精度。
-
公开(公告)号:CN110794576A
公开(公告)日:2020-02-14
申请号:CN201911057610.4
申请日:2019-11-01
Applicant: 中国科学院光电技术研究所
IPC: G02B27/00
Abstract: 本发明公开了一种基于相位调制的光学合成孔径成像望远镜阵列偏心误差探测方法,可用于光学合成孔径成像望远镜阵列中的偏心误差探测。本方法通过在合成孔径望远镜阵列任一子镜中产生特定的相位调制,用相机在系统像面记录一组相应点扩散函数PSF分布,利用傅里叶逆变换得到一组系统的光学传递函数OTF,对这些数据进行处理,复原合成孔径望远镜阵列系统出瞳面光瞳分布,得到系统各个子镜的偏心误差。本方法使用三维位移台对合成孔径望远镜的一个子镜进行相位调制,一次性获取所有望远镜子镜的偏心误差,没有额外引入其他器件,解决了传统望远镜阵列中安装位置传感器来监测偏心误差的缺点,极大地提高了偏心误差的探测能力。
-
公开(公告)号:CN110793754A
公开(公告)日:2020-02-14
申请号:CN201911057666.X
申请日:2019-11-01
Applicant: 中国科学院光电技术研究所
IPC: G01M11/02
Abstract: 本发明公开了一种基于相移调制的拼接式望远镜系统偏心误差探测方法,用于拼接式望远镜中的各子镜偏心误差探测。本方法利用相移调制设备在拼接式望远镜某一子镜中添加特定的相位调制,在系统像面上捕获一组系统的点扩散函数,通过处理这些点扩散函数,恢复系统出瞳面的光瞳分布,得到系统各个子镜的偏心误差。本方法利用液晶相位延迟器对拼接式望远镜的一个子镜进行相位调制,可以同时得到望远镜所有子镜的偏心误差,不需要引入其他探测器件,解决了拼接式望远镜需要安装位置传感器来监测偏心误差的问题,简化了拼接式望远镜系统的复杂度。
-
公开(公告)号:CN108873682A
公开(公告)日:2018-11-23
申请号:CN201810729032.3
申请日:2018-07-05
Applicant: 中国科学院光电技术研究所
IPC: G05B11/32
Abstract: 本发明公开了一种基于改进的重复控制器的倾斜镜振动抑制方法,该控制方法插入倾斜镜系统来抑制振动。重复控制作为一种学习型的策略,它可以在系统扰动频率已知的情况下,使得误差衰减得到增强,并对系统干扰实现最佳地较正。本发明针对传统的重复控制方法会在非周期性频率下将扰动放大这一问题,提出一种改进的重复控制器从控制算法上进行优化,在提高系统扰动抑制能力的基础上不会引起其他频率的扰动放大。此外该方法只需要一个图像传感器,成本低。同时,其结构简单,不依赖于模型,易于操作和实现,不会导致振动抑制与噪声传播之间的折衷。
-
公开(公告)号:CN108646568A
公开(公告)日:2018-10-12
申请号:CN201810729031.9
申请日:2018-07-05
Applicant: 中国科学院光电技术研究所
IPC: G05B13/04
Abstract: 本发明公开了一种基于改进的扰动观测器的倾斜镜振动抑制方法。由于天文望远镜机械振动降低了望远镜控制系统的闭环性能,并且这些振动不能很好地被经典的控制结构补偿,该方法利用倾斜镜来抑制振动,该方法通过设计一个改进的Q滤波器,优化了倾斜镜控制系统的灵敏度函数,有效地抑制了大幅振动,降低了水床效应对系统性能的影响。在系统扰动频率已知的情况下,这种控制方法可以实现最佳地较正,有效地提高系统的扰动抑制能力。该方法从控制算法上对系统进行优化,仅需要一个图像传感器,节约了成本;同时,该方法思路清晰,结构简单,不依赖于模型,易于操作和实现。
-
公开(公告)号:CN107728314A
公开(公告)日:2018-02-23
申请号:CN201710704432.4
申请日:2017-08-17
Applicant: 中国科学院光电技术研究所
IPC: G02B26/08
Abstract: 本发明公开了一种基于旋转双闪耀光栅的阵列光束偏转的方法,采用多个旋转双闪耀光栅构成阵列,每一个旋转双闪耀光栅根据两闪耀光栅的绕轴独立旋转来控制其中单路激光的定向偏转,通过旋转双闪耀光栅阵列实现阵列激光束的定向偏转控制。在每一个旋转双闪耀光栅控制单路激光定向偏转的过程中,准直激光光源入射到第一块闪耀光栅上,再通过第二块闪耀光栅,两闪耀光栅进行绕轴独立旋转,从而实现出射光束的二维偏转,每单路出射光束的偏转角和方位角可根据两闪耀光栅的旋转角度得出。本方法具有输出光束功率高、光束能量损耗少,偏转精度高、系统体积轻便等特点。
-
公开(公告)号:CN107656363A
公开(公告)日:2018-02-02
申请号:CN201711041721.7
申请日:2017-10-31
Applicant: 中国科学院光电技术研究所
CPC classification number: G02B21/0004 , G02B27/0087
Abstract: 本发明公开了一种基于多波长相位调制的光学合成孔径成像望远镜阵列共相误差探测方法,通过给合成孔径成像望远镜阵列的一个子望远镜添加特定的相位调制,用相机测得系统的一组点扩散函数PSF值,对这组PSF值进行处理得到望远镜阵列在特定波长下的部分相位差,再在不同波长情况下重复上述过程得到多个部分相位差,通过对多个波长情况下的各个部分相位差进行处理得到成像系统的共相误差。本方法使用空间相位调制器件对合成孔径成像望远镜阵列的一个子望远镜进行相位调制,算法恢复共相误差不需要迭代计算,能快速精准的探测系统的共相误差,同时由于本方法利用了多波长信息,克服了2π模糊的影响,从而极大的提高了共相误差的探测范围和精度。
-
-
-
-
-
-
-
-
-