-
公开(公告)号:CN1213076A
公开(公告)日:1999-04-07
申请号:CN98121928.4
申请日:1998-09-30
Applicant: 复旦大学
IPC: G01J3/447
Abstract: 已有的红外双重富利埃变换的椭圆偏振光谱仪设计方法均采用单只起偏器,并由检偏器作连续转动。本发明在既对波长又对偏振角作双重富利埃变换的同时,采用两个起偏器Po和P,其中起偏器Po固定,检偏器A与起偏器P采用2∶1系数同步旋转,可得到各波长的光强信号,通过双重富利埃变换求得对应于各波长的4个交流光强分量,就能以不同的组合自洽求出完整的椭偏参数。采用本发明制造的红外椭圆偏振光谱仪,具有数据自洽、准确、灵敏和实时快速的优点。
-
公开(公告)号:CN112557304A
公开(公告)日:2021-03-26
申请号:CN202011316227.9
申请日:2020-11-22
Applicant: 复旦大学
IPC: G01N21/21
Abstract: 本发明属于纳米材料和光学技术领域,具体为一种基于椭偏参数轨迹拓扑特征识别薄膜材料纳米结构的方法。本发明方法包括以下步骤:利用椭圆偏振光谱仪测量薄膜材料的P光、S光的复反射率比值ρ,进而获得两个椭偏参数ψ与Δ;获得椭偏参数(ψ、Δ)的轨迹曲线;根据所述轨迹曲线的拓扑特征判定薄膜材料纳米结构由颗粒到网状的转变;求得(ψ、Δ)轨迹的切线方位角曲线;根据所述切线方位角曲线的拓扑特征判定薄膜材料纳米结构连续性的转变,从而实现对薄膜材料纳米结构的识别。本发明可用于薄膜材料生长过程中纳米结构的原位监测,对利用人工智能识别纳米结构有着重要的参考价值,具有非接触、非破坏、对环境要求不苛刻等优点。
-
公开(公告)号:CN110320745B
公开(公告)日:2020-07-07
申请号:CN201910557029.2
申请日:2019-06-26
Applicant: 复旦大学
Abstract: 本发明属于能源技术领域,具体为具有理想发射谱的柔性被动冷却薄膜及其制备方法。本发明制备方法包括:获取紫外固化树脂的光学常数;根据光学常数设计光子晶体微结构;通过微纳加工技术在光阻上制备出微结构;通过紫外纳米压印卷对卷方法将微结构制备到柔性衬底上。本发明制备的被动冷却薄膜,在晴天时可以将户外物体的热量通过大气窗口辐射到宇宙空间中。由于本方法制备的辐射冷却薄膜表面具有微结构,可以大大提高辐射冷却的功率,使目标物体的降温幅度增加;同时,使用紫外纳米压印技术与工业卷对卷生产相结合,使本发明制备的冷却薄膜可以制备到柔性塑料衬底上,拓宽了应用的范围。
-
公开(公告)号:CN110926612A
公开(公告)日:2020-03-27
申请号:CN201911310139.5
申请日:2019-12-18
Applicant: 复旦大学
Abstract: 本发明公开一种多通道宽带高分辨光谱仪,包括沿光源入射或反射路线,依次设置的若干光源入射狭缝、由多个子光栅组成的多通道集成光栅、多通道共用的二维聚焦成像镜,以及二维面阵探测器;入射光沿各光源入射狭缝入射到对应的集成光栅上,经集成光栅衍射后被共用的二维聚焦成像镜聚焦,全光谱区衍射光入射到二维面阵探测器焦平面检测。无任何机械位移部件,实现多通道全光谱的高速检测和分析,具有很高的光谱分辨率和工作可靠性。
-
公开(公告)号:CN110411952A
公开(公告)日:2019-11-05
申请号:CN201910633212.6
申请日:2019-07-15
Applicant: 复旦大学
IPC: G01N21/21
Abstract: 本发明公开了一种多偏振通道面阵列探测的椭圆偏振光谱获取系统和方法。本发明采用多通道偏振器阵列同时获取不同偏振态信号,不同偏振态信号通过光纤阵列耦合器与光纤阵列适配器并行传送到多通道光谱仪中,各通道偏振信号经多通道光谱仪分光在二维面阵列探测器形成多偏振态的光谱分布,再通过傅里叶分析方法对多偏振态光谱信号进行数据处理获得椭偏参数。本发明的系统和方法克服了利用机械运动部件传动进行椭偏光谱测量的缺点,能实时快速地获取椭圆偏振光谱以及样品的其它材料参数。
-
公开(公告)号:CN106584975B
公开(公告)日:2019-05-03
申请号:CN201611105403.8
申请日:2016-12-05
Applicant: 复旦大学
Abstract: 本发明公开了一种红外增强的宽带光热转换薄膜器件,第一层为防反射的保护层,采用透明介质膜;第二层为光吸收层,采用过渡金属膜;第三层为光学振幅和位相匹配层,采用透明介质膜;第四层为光吸收层,采用过渡金属膜;第五层为光学振幅和位相匹配层,采用透明介质膜;第六层为光吸收层,采用过渡金属膜;第七层为光学振幅和位相匹配层,采用透明介质膜;第八层为高反射层,采用完全非透明的高反射金属膜;第一层到第八层厚度的选择依据各膜层的光学常数,在250‑2000nm波长区,满足的高吸收条件为:(R+T)≤5%,AX≥95%,R+T+AX=1。通过结构参数的最优化计算,能够在250-2000nm波长区,实现光子能量被转换为热能的光吸收率Ax超过95%。
-
公开(公告)号:CN105252844A
公开(公告)日:2016-01-20
申请号:CN201510662378.2
申请日:2015-10-15
Applicant: 复旦大学
CPC classification number: Y02E10/40 , B32B15/04 , B32B2250/05 , B32B2307/30 , B32B2551/00 , F24S80/45
Abstract: 本发明公开了一种宽带薄膜型光热能量转换器件,第一层为防反射的保护层,采用透明介质膜;第二层为光吸收层,采用过渡金属膜;第三层为光学振幅和位相匹配层,采用透明介质膜;第四层为光吸收层,采用过渡金属膜;第五层为光学振幅和位相匹配层,采用透明介质膜;第六层为高反射层,采用完全非透明的高反射金属膜;第一层到第六层厚度的选择依据各膜层的光学常数,在250-1200nm波长区,满足的高吸收条件为:(R+T)≤5%,AX≥95%,R+T+AX=1。能够在250-1200nm波长区,实现光子能量被转换为热能的光吸收率Ax超过95%。
-
公开(公告)号:CN103163078B
公开(公告)日:2015-05-13
申请号:CN201310078010.2
申请日:2013-03-12
Applicant: 复旦大学
IPC: G01N21/21
Abstract: 本发明属于光学电子器件技术领域,具体为一种提高椭偏仪测量精度的方法。所述椭偏仪特征包括依次连接的如下部件:光源、固定起偏器、旋转起偏器、样品、检偏器、探测器等;其中,旋转起偏器和检偏器以角速度保持 的比例关系同步旋转。该型椭偏仪具有两种自洽的方法获取椭偏参数,进而获取被测样品的各类光学参数。传统上,一般采用两种方法之一获取椭偏参数,或者对两种方法获取的参数进行简单的平均。本发明提出一种新的数据处理方法,将两种方法有机结合起来,能显著提高测量准确度。
-
公开(公告)号:CN103163078A
公开(公告)日:2013-06-19
申请号:CN201310078010.2
申请日:2013-03-12
Applicant: 复旦大学
IPC: G01N21/21
Abstract: 本发明属于光学电子器件技术领域,具体为一种提高椭偏仪测量精度的方法。所述椭偏仪特征包括依次连接的如下部件:光源、固定起偏器、旋转起偏器、样品、检偏器、探测器等;其中,旋转起偏器和检偏器以角速度保持的比例关系同步旋转。该型椭偏仪具有两种自洽的方法获取椭偏参数,进而获取被测样品的各类光学参数。传统上,一般采用两种方法之一获取椭偏参数,或者对两种方法获取的参数进行简单的平均。本发明提出一种新的数据处理方法,将两种方法有机结合起来,能显著提高测量准确度。
-
公开(公告)号:CN101975358B
公开(公告)日:2012-07-04
申请号:CN201010291865.X
申请日:2010-09-26
Applicant: 复旦大学
Abstract: 本发明属于光学电子器件技术领域,具体为一种多镜和多光纤耦合的太阳光模拟器光源。本发明利用点光源发光在立体空间具有较宽发光张角的特点,采用多透镜和反射镜组合和光纤耦合的方式,在光源的空间发光张角范围内,实现光源能量的高效率利用和输出,是一种新型的太阳光模拟器件,可在绿色能源等领域获得实际应用。
-
-
-
-
-
-
-
-
-