-
公开(公告)号:CN102980855A
公开(公告)日:2013-03-20
申请号:CN201210469733.0
申请日:2012-11-19
Applicant: 南京农业大学
IPC: G01N21/27
Abstract: 本发明公开了一种作物氮素营养无损监测仪的光学系统校正方法。将光管各元器件依次置于光电探测器光谱响应度测量仪样品室中,测量各元器件的光谱响应度曲线,将各元器件的光谱响应度调整到同一标准上;将光管置于样品室中,以相同辐照度的光源扫描光管与标准探测器,输出的光电流经过锁相放大器采集后送入计算机进行处理得到上、下光管半波宽积分响应度;计算上、下光管半波宽积分响应度比值,得到监测仪光学系统的校正系数,将校正系数写入后续单片机处理系统即可实现对监测仪光学系统的校正。本发明克服光学系统各元器件特性及光学系统结构对作物氮素营养无损监测仪检测精度及可靠性的影响,提高了仪器的检测精度与可靠性、适用性。
-
公开(公告)号:CN119942319A
公开(公告)日:2025-05-06
申请号:CN202311454183.X
申请日:2023-11-03
Applicant: 南京农业大学 , 神农智慧农业研究院南京有限公司
IPC: G06V20/10 , G06V20/17 , G06V10/10 , G06V10/776 , G06T7/73
Abstract: 本发明公开了一种适用于棉花出苗早期的快速、高效计数方法,其步骤为:步骤一、获取棉花出苗早期无人机RGB图像;步骤二、将采集的RGB图像拼接后输出正射影像;步骤三、计算ExG指数后将图像二值化,使用直线检测方法获取作物行,对作物行扩展后生成掩膜边界,掩膜后提取出棉花幼苗行;步骤四、ExG指数图像中垂直于作物行像元DN值累加可得到一条有多个波峰波谷的波形曲线,对达到要求的波峰进行定位与计数;步骤五、使用RMSE和R2两个指标对WM计数效果进行评价。本发明在棉花幼苗监测时,对棉花幼苗尺寸不敏感,在粗分辨率与亮度变化的图像中依然能保障计数精度,是适用于棉花幼苗早期监测需要的高效率、短周期、低成本监测方法。
-
公开(公告)号:CN115508356B
公开(公告)日:2025-03-14
申请号:CN202211301573.9
申请日:2022-10-24
Applicant: 南京农业大学
IPC: G01N21/84
Abstract: 本发明提出一种基于氮分配理论的稻麦叶片氮含量高光谱估算方法,包括以下步骤:构建叶片氮分配模型,利用稻麦叶片尺度数据集标定模型系数,基于冠层反射光谱估算叶片叶绿素含量和干物质含量,利用标定的叶片氮分配模型估算叶片氮含量。本发明的方法在叶片尺度构建叶片氮分配模型,然后用遥感技术更容易估算的生化参数来估算叶片氮含量,该方法操作步骤简单,模型具有跨尺度可拓展性,适用于冠层水平不同稻麦品种、不同栽培处理、不同生育时期,可广泛用于稻麦冠层水平的叶片氮含量监测。
-
公开(公告)号:CN119334263A
公开(公告)日:2025-01-21
申请号:CN202411391968.1
申请日:2024-10-08
Applicant: 南京农业大学
Abstract: 本申请公开了一种封行作物行间路径间距的测量方法。方法包括以下步骤:通过农业装备顶部设置的第一深度相机和两个前轮处设置的两个第二深度相机,分别采集不同视角的作物图像信息,其中两个第二深度相机的视野与第一深度相机存在重叠;分别提取第二深度相机的两个第二图像中土壤与作物的分界线,进而确定出对应前轮的行进路线;根据第二深度相机与第一深度相机间的位置关系,将两个第二图像中行进路线的起点分别映射于第一深度相机的第一图像中;计算映射在第一深度相机中的两个起点的距离。本方法测量准确率高、稳定性强,可用于作物生长中后期行间作业的路径计算与导航指引,方便农业装备根据所测距离及时调整轮距,实现灵活高效地自主作业。
-
公开(公告)号:CN118333213A
公开(公告)日:2024-07-12
申请号:CN202410418998.0
申请日:2024-04-09
Applicant: 南京农业大学
IPC: G06Q10/04 , G06V20/13 , G06V20/68 , G06Q50/02 , G06N5/01 , G06N20/00 , G06F18/25 , G06F17/18 , G06F18/214
Abstract: 本发明提出了一种基于遥感与气象信息的田块尺度大面积水稻产量高精度预测方法,包括以下步骤:首先基于遥感云平台计算水稻不同时期的Sentinel‑1后向散射系数和Sentinel‑2植被指数最大值与累积值,同时利用农业气象站物候数据获取研究区全生育期内气象指标;然后利用随机森林算法明确不同数据最优组合;构建元学习集成学习回归MLER;基于先验知识测试省级范围不同时间窗口的MLER预测精度,明确省级范围内多源数据最优组合,实现大面积田块尺度水稻产量预测。该方法可以及时、准确对大面积田块尺度水稻产量进行估算,在水稻种植管理、粮食安全评估和应对气候变化方面具有极大的应用价值。
-
公开(公告)号:CN112557393B
公开(公告)日:2024-02-20
申请号:CN202011303981.9
申请日:2020-11-19
Applicant: 南京农业大学
IPC: G01N21/84
Abstract: 本发明提出基于高光谱影像融合图谱特征的小麦叶层氮含量估测方法,步骤包括:采集小麦冠层高光谱影像数据和实测小麦叶层氮含量;首先,进行影像预处理,提取光谱反射率,计算植被指数、位置和形状特征,利用卷积神经网络提取深层特征。其次,通过相关系数分析、随机森林算法进行特征优选,利用并行融合策略构建新的融合图谱特征。最后,利用粒子群优化支持向量回归方法,构建基于融合图谱特征的小麦叶层氮含量估测模型。本发明的方法估测精度高、特征鲁棒性强,适用于小麦全生育期,同时也是目前第一次提出综合高光谱影像的植被指数、位置和形状特征、深层特征构建融合图谱特征估测小麦叶层氮含量的方法。
-
公开(公告)号:CN116593419A
公开(公告)日:2023-08-15
申请号:CN202310400044.2
申请日:2023-04-14
Applicant: 南京农业大学
IPC: G01N21/3563 , G01N21/55 , G01N21/359
Abstract: 本发明公开了一种缓解LCC与秸秆‑土壤背景影响的小麦绿色LAI估算方法,其步骤为:步骤一、数据采集;步骤二、计算秸秆‑土壤背景适应红边差值指数,包括:a、基于小麦冠层光谱计算已有的REDVI;b、基于田间背景光谱计算已有的REDVI;c、结合小麦冠层多光谱曲线的RE1和R波段,构建RSARE;步骤三、构建小麦叶面积指数LAI估算模型;步骤四、检验小麦LAI估算模型。本发明可以同时缓解LAI估算过程中秸秆‑土壤背景与LCC的影响,并基于该指数构建小麦叶面积指数估算模型,可在小麦生产过程中实现LAI的早期估算。
-
公开(公告)号:CN114441457B
公开(公告)日:2022-11-22
申请号:CN202210119047.4
申请日:2022-02-08
Applicant: 南京农业大学
IPC: G01N21/27 , G01N21/55 , G06V20/17 , G06V20/10 , G06V10/764 , G06V10/766 , G06V10/774 , G06K9/62
Abstract: 本发明提出了一种基于无人机多光谱影像消除水稻冠层背景效应并提升叶片氮浓度监测精度的方法,包括以下步骤:首先对获取的无人机多光谱影像,进行拼接、几何校正和辐射校正等预处理,得到研究区的正射影像;然后基于正射影像,以决策树方法获取端元,构建端元反射率数据库;再次应用光谱解混模型,求解端元丰度;最后将端元丰度和植被指数相乘,构建叶片氮浓度估算模型,从而达到消除背景效应提升氮浓度监测精度的效果。本发明构建的冠层背景消除和提升氮浓度反演精度的方法操作步骤简单、高效,并且可实现自动化,可用于消除无人机或卫星影像中的冠层背景效应及相关农学参数反演等。
-
公开(公告)号:CN114782840A
公开(公告)日:2022-07-22
申请号:CN202210414686.3
申请日:2022-04-20
Applicant: 南京农业大学
IPC: G06V20/17 , G06V20/68 , G06V10/20 , G06V10/54 , G06V10/58 , G06V10/771 , G06V10/764 , G06K9/62
Abstract: 本发明提出了一种基于无人机RGB影像的小麦物候期实时分类方法,其步骤为:(1)根据不同播期处理的小麦大田实际生长情况,获取时序高空间分辨率RGB影像并进行预处理,得到不同年份间的相同区域的无人机影像;(2)提取时序无人机影像的光谱信息和纹理信息,衍生出的所有光谱特征与纹理特征作为特征全集;(3)基于紧致‑分离原则的特征选择算法对所有特征重要性进行排序,确定最佳特征与特征数量;(4)应用mRVM分类器,自动对不同物候阶段的特征进行分类识别,获得总体分类精度与各时期分类精度。本发明构建的分类方法简单、高效,可得到及时的作物物候信息,为有效指导农业管理决策提供依据,例如特定阶段的灌溉、施肥和农药管理活动等。
-
公开(公告)号:CN113435282B
公开(公告)日:2021-12-21
申请号:CN202110677003.9
申请日:2021-06-18
Applicant: 南京农业大学
Abstract: 本发明公开了一种基于深度学习的无人机影像麦穗识别方法,通过将无人机测试影像输入至麦穗识别模型识别出麦穗信息,所述识别模型的构建包括:S1、数据采集步骤;S2、数据处理步骤;S3、构建适用于无人机影像麦穗识别网络,对所述无人机影像数据进行训练,得到麦穗识别模型;S4、利用训练好的麦穗识别模型对无人机影像中的待检测麦穗进行识别,融合麦穗识别模型的检测框,得到识别结果;其特征在于S3构建多尺度网络特征架构,通过多尺度检测层提取麦穗特征,增强网络对小尺寸麦穗特征的提取能力;基于交并比计算检测层的置信度损失权重,提高小尺寸麦穗特征对网络的贡献。本发明提出的方案具有检测小尺寸密集麦穗影像的优点,很好解决了麦穗识别的技术困境。
-
-
-
-
-
-
-
-
-