-
公开(公告)号:CN119418198A
公开(公告)日:2025-02-11
申请号:CN202411433912.8
申请日:2024-10-15
Applicant: 南京农业大学
IPC: G06V20/10 , G06V20/17 , G06V10/10 , G06V10/80 , G06V10/82 , G06V10/764 , G06V10/56 , G06V10/774 , G06V10/62
Abstract: 本发明提出了一种结合时间序列RGB图像和机器学习的小麦育种材料生育期的季内分类和估算方法,其步骤为:(1)根据不同生长季、不同生态点的小麦育种材料小区试验,获取时序高空间分辨率RGB影像并进行预处理,构建大量种质资源在不同生育期的样本库;(2)融合株高信息和图像信息的生育期阶段分类,实现生育阶段的高精度分类;(3)基于分类后获得的时序预测概率,构建关键生育期起始日期的估算模型;(4)确定育种材料的生育期监测的最佳数据采集间隔。本发明构建的方法高效,可得到及时的作物物候信息,可以指导种植管理、优化品种选择和提高产量和品质,为小麦生产提供科学依据和技术支持。
-
公开(公告)号:CN114782840B
公开(公告)日:2024-11-26
申请号:CN202210414686.3
申请日:2022-04-20
Applicant: 南京农业大学
IPC: G06V20/17 , G06V20/68 , G06V10/20 , G06V10/54 , G06V10/58 , G06V10/771 , G06V10/764
Abstract: 本发明提出了一种基于无人机RGB影像的小麦物候期实时分类方法,其步骤为:(1)根据不同播期处理的小麦大田实际生长情况,获取时序高空间分辨率RGB影像并进行预处理,得到不同年份间的相同区域的无人机影像;(2)提取时序无人机影像的光谱信息和纹理信息,衍生出的所有光谱特征与纹理特征作为特征全集;(3)基于紧致‑分离原则的特征选择算法对所有特征重要性进行排序,确定最佳特征与特征数量;(4)应用mRVM分类器,自动对不同物候阶段的特征进行分类识别,获得总体分类精度与各时期分类精度。本发明构建的分类方法简单、高效,可得到及时的作物物候信息,为有效指导农业管理决策提供依据,例如特定阶段的灌溉、施肥和农药管理活动等。
-
公开(公告)号:CN119942319A
公开(公告)日:2025-05-06
申请号:CN202311454183.X
申请日:2023-11-03
Applicant: 南京农业大学 , 神农智慧农业研究院南京有限公司
IPC: G06V20/10 , G06V20/17 , G06V10/10 , G06V10/776 , G06T7/73
Abstract: 本发明公开了一种适用于棉花出苗早期的快速、高效计数方法,其步骤为:步骤一、获取棉花出苗早期无人机RGB图像;步骤二、将采集的RGB图像拼接后输出正射影像;步骤三、计算ExG指数后将图像二值化,使用直线检测方法获取作物行,对作物行扩展后生成掩膜边界,掩膜后提取出棉花幼苗行;步骤四、ExG指数图像中垂直于作物行像元DN值累加可得到一条有多个波峰波谷的波形曲线,对达到要求的波峰进行定位与计数;步骤五、使用RMSE和R2两个指标对WM计数效果进行评价。本发明在棉花幼苗监测时,对棉花幼苗尺寸不敏感,在粗分辨率与亮度变化的图像中依然能保障计数精度,是适用于棉花幼苗早期监测需要的高效率、短周期、低成本监测方法。
-
公开(公告)号:CN114782840A
公开(公告)日:2022-07-22
申请号:CN202210414686.3
申请日:2022-04-20
Applicant: 南京农业大学
IPC: G06V20/17 , G06V20/68 , G06V10/20 , G06V10/54 , G06V10/58 , G06V10/771 , G06V10/764 , G06K9/62
Abstract: 本发明提出了一种基于无人机RGB影像的小麦物候期实时分类方法,其步骤为:(1)根据不同播期处理的小麦大田实际生长情况,获取时序高空间分辨率RGB影像并进行预处理,得到不同年份间的相同区域的无人机影像;(2)提取时序无人机影像的光谱信息和纹理信息,衍生出的所有光谱特征与纹理特征作为特征全集;(3)基于紧致‑分离原则的特征选择算法对所有特征重要性进行排序,确定最佳特征与特征数量;(4)应用mRVM分类器,自动对不同物候阶段的特征进行分类识别,获得总体分类精度与各时期分类精度。本发明构建的分类方法简单、高效,可得到及时的作物物候信息,为有效指导农业管理决策提供依据,例如特定阶段的灌溉、施肥和农药管理活动等。
-
公开(公告)号:CN116469019A
公开(公告)日:2023-07-21
申请号:CN202310400046.1
申请日:2023-04-14
Applicant: 南京农业大学
IPC: G06V20/17 , G06V20/10 , G06V10/26 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/084
Abstract: 本发明公开了一种基于全卷积神经网络的田间小区自动分割方法,该方法基于无人机遥感平台获取小麦育种试验的无人机影像,构建全卷积神经网模型,在模型中引入注意力机制用于平衡数据集中类别分布不均衡的情况,之后使用图像细化以及直线检测等后处理算法对全卷积神经网络得到的边界提取结果行进一步的改进和完善,最后将训练好的全卷积神经网络模型和后处理算法部署至电脑端实现Windows操作系统下的育种小区边界提取系统,实现一套系统化、自动化的育种小区边界提取流程。本发明能够有效地缓解传统方法因小区内部阴影和杂草等原因造成的误分类现象,适用于基于无人机平台获取的遥感影像的育种试验边界提取问题。
-
-
-
-