基于深度学习的无人机影像麦穗识别方法

    公开(公告)号:CN113435282A

    公开(公告)日:2021-09-24

    申请号:CN202110677003.9

    申请日:2021-06-18

    Abstract: 本发明公开了一种基于深度学习的无人机影像麦穗识别方法,通过将无人机测试影像输入至麦穗识别模型识别出麦穗信息,所述识别模型的构建包括:S1、数据采集步骤;S2、数据处理步骤;S3、构建适用于无人机影像麦穗识别网络,对所述无人机影像数据进行训练,得到麦穗识别模型;S4、利用训练好的麦穗识别模型对无人机影像中的待检测麦穗进行识别,融合麦穗识别模型的检测框,得到识别结果;其特征在于S3构建多尺度网络特征架构,通过多尺度检测层提取麦穗特征,增强网络对小尺寸麦穗特征的提取能力;基于交并比计算检测层的置信度损失权重,提高小尺寸麦穗特征对网络的贡献。本发明提出的方案具有检测小尺寸密集麦穗影像的优点,很好解决了麦穗识别的技术困境。

    借助智能手机和GPS制定作物精确栽培方案的方法和系统

    公开(公告)号:CN103745407A

    公开(公告)日:2014-04-23

    申请号:CN201310750814.2

    申请日:2013-12-31

    Abstract: 本发明公开了一种借助智能手机和GPS制定作物精确栽培方案的方法,它通过智能手机装载农区基本信息数据,在农业生产现场利用GPS接收装置定位田块,选择田块栽培管理阶段,并输入田块的作物品种类型、产量目标和栽培管理措施数据或实时苗情数据,通过智能手机处理程序的作物管理知识模型模块进行运算决策,生成精确管理方案。本发明实施方法简单,使用主流的智能手机设备作为决策工具,方便携带,制定的方案具有实用性和可靠性。本发明还公开了一种借助智能手机和GPS制定作物精确栽培方案的系统,用于实现本发明的方法。

    基于高光谱影像融合图谱特征的小麦叶层氮含量估测方法

    公开(公告)号:CN112557393B

    公开(公告)日:2024-02-20

    申请号:CN202011303981.9

    申请日:2020-11-19

    Abstract: 本发明提出基于高光谱影像融合图谱特征的小麦叶层氮含量估测方法,步骤包括:采集小麦冠层高光谱影像数据和实测小麦叶层氮含量;首先,进行影像预处理,提取光谱反射率,计算植被指数、位置和形状特征,利用卷积神经网络提取深层特征。其次,通过相关系数分析、随机森林算法进行特征优选,利用并行融合策略构建新的融合图谱特征。最后,利用粒子群优化支持向量回归方法,构建基于融合图谱特征的小麦叶层氮含量估测模型。本发明的方法估测精度高、特征鲁棒性强,适用于小麦全生育期,同时也是目前第一次提出综合高光谱影像的植被指数、位置和形状特征、深层特征构建融合图谱特征估测小麦叶层氮含量的方法。

    基于深度学习的无人机影像麦穗识别方法

    公开(公告)号:CN113435282B

    公开(公告)日:2021-12-21

    申请号:CN202110677003.9

    申请日:2021-06-18

    Abstract: 本发明公开了一种基于深度学习的无人机影像麦穗识别方法,通过将无人机测试影像输入至麦穗识别模型识别出麦穗信息,所述识别模型的构建包括:S1、数据采集步骤;S2、数据处理步骤;S3、构建适用于无人机影像麦穗识别网络,对所述无人机影像数据进行训练,得到麦穗识别模型;S4、利用训练好的麦穗识别模型对无人机影像中的待检测麦穗进行识别,融合麦穗识别模型的检测框,得到识别结果;其特征在于S3构建多尺度网络特征架构,通过多尺度检测层提取麦穗特征,增强网络对小尺寸麦穗特征的提取能力;基于交并比计算检测层的置信度损失权重,提高小尺寸麦穗特征对网络的贡献。本发明提出的方案具有检测小尺寸密集麦穗影像的优点,很好解决了麦穗识别的技术困境。

    基于高光谱影像融合图谱特征的小麦叶层氮含量估测方法

    公开(公告)号:CN112557393A

    公开(公告)日:2021-03-26

    申请号:CN202011303981.9

    申请日:2020-11-19

    Abstract: 本发明提出基于高光谱影像融合图谱特征的小麦叶层氮含量估测方法,步骤包括:采集小麦冠层高光谱影像数据和实测小麦叶层氮含量;首先,进行影像预处理,提取光谱反射率,计算植被指数、位置和形状特征,利用卷积神经网络提取深层特征。其次,通过相关系数分析、随机森林算法进行特征优选,利用并行融合策略构建新的融合图谱特征。最后,利用粒子群优化支持向量回归方法,构建基于融合图谱特征的小麦叶层氮含量估测模型。本发明的方法估测精度高、特征鲁棒性强,适用于小麦全生育期,同时也是目前第一次提出综合高光谱影像的植被指数、位置和形状特征、深层特征构建融合图谱特征估测小麦叶层氮含量的方法。

    基于RGB图像融合特征的小麦叶层氮含量估测方法

    公开(公告)号:CN112613338A

    公开(公告)日:2021-04-06

    申请号:CN202011303935.9

    申请日:2020-11-19

    Abstract: 本发明提出基于RGB图像融合特征的小麦叶层氮含量估测方法,步骤包括:采集小麦冠层RGB图像和实测小麦叶层氮含量;首先,进行RGB图像预处理,计算可见光植被指数;其次,利用离散小波变换方法实现水平方向、垂直方向和对角方向的多尺度小波纹理特征提取;再次,利用卷积神经网络提取RGB图像深层特征;最后,构建基于融合特征的粒子群优化支持向量回归模型估测小麦叶层氮含量。本发明的方法估测精度高、特征鲁棒性强,适用于小麦全生育期,同时也是目前第一次提出综合RGB图像的可见光植被指数、小波纹理特征、优选的深层特征构建融合特征来估测小麦叶层氮含量的方法。

Patent Agency Ranking