-
公开(公告)号:CN114972790B
公开(公告)日:2024-12-20
申请号:CN202210625461.2
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/0464
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法、电子设备及存储介质,涉及计算机视觉领域。获取已标注类型标签的多张图像样本。针对每一张图像样本,将图像样本输入至图像分类模型,在图像分类模型中的任意一层卷积层中,从图像样本中提取出多张具有不同通道的特征图像。其中,不同通道表征图像样本不同的图像特征。利用预测得到的图像样本的类型标签和特征图像的类型标签,以及该图像样本已标注的类型标签,计算得到图像分类模型的损失值,基于该损失值调整图像分类模型的参数。重复执行上述步骤,以使可以达到预期训练目标。如此,由于没有增加输入图像分类模型的图像样本的数量,使得每次模型训练耗费的时间更少。
-
公开(公告)号:CN118379208A
公开(公告)日:2024-07-23
申请号:CN202410816691.6
申请日:2024-06-24
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了一种基于混合损失函数扩散模型的增强CT图像生成方法及装置,该方法包括:采集CT图像数据及其配对的造影剂增强CT图像数据,并采用数据增强方法和面向数据的正则化方法对其进行预处理,以按比例划分为训练集、测试集和验证集;构建用于生成造影剂增强CT图像的扩散模型;使用训练集对扩散模型进行迭代训练,基于混合损失函数调整扩散模型的参数,以获取训练好的扩散模型;将测试集中的CT图像数据输入至训练好的扩散模型中,得到对应的造影剂增强CT图像数据。本发明能够生成清晰可靠的造影剂增强CT图像,能够更好地捕捉数据分布的特征,提高了对不同特征的感知能力,增强了合成图像的质量,提高了模型的泛化性。
-
公开(公告)号:CN116741380A
公开(公告)日:2023-09-12
申请号:CN202310743593.X
申请日:2023-06-21
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G16H50/30 , G06V10/774 , G06V10/80 , G06V10/764 , G06T7/10
Abstract: 本发明公开了肝胆管细胞癌术后的复发情况预测方法,涉及计算机技术领域,包括S1构建复发情况预测模型,复发情况预测模型包括图像分割模块、指标数据分析模块和预测分析模块;S2获取训练数据集,训练数据包括CT图像和病例指标;S3训练数据集导入复发情况预测模型,并对其进行训练优化;S4获取待预测数据;S5利用优化后的复发情况预测模型对待预测数据进行分析得到,肝胆管细胞癌术后的复发情况;除了对CT图像进行充分利用外,本方法还将病例所对应的指标数据与其图像数据进行了融合使用,以补充CT图像无法表达的信息。通过不断地优化训练,最终得到了具有良好性能的术后复发情况预测模型。
-
公开(公告)号:CN116740108A
公开(公告)日:2023-09-12
申请号:CN202310682616.0
申请日:2023-06-09
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06T7/13 , G06T7/12 , G06N3/048 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于深度学习的单阶段实例分割方法,本申请通过传统的边缘检测算子提取到每个实例的边缘信息,从而让网络在训练学习的过程中显示的监督对实例轮廓的学习,边缘信息的融入不仅提升了实例掩码的分割精度,而且融入边缘信息后的算法在分割掩码边缘处的表现更精细,并且本申请通过原型掩码分组后再融合的方法,将原型掩码的融合过程从一次增加为两次,两次融合的方式不仅提升了实例掩码的分割效果而且增加了整个算法的泛化能力。
-
公开(公告)号:CN115937592A
公开(公告)日:2023-04-07
申请号:CN202211599181.5
申请日:2022-12-12
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/764 , G06T7/00 , G06V10/40 , G06V10/82 , G06N3/088 , G06V10/774 , G16H30/20 , G06N3/0455
Abstract: 本发明涉及一种基于潜层表征的主动学习样本标注方法,述样本标注方法包括:S1、特征提取步骤:通过自动编码器模拟从病理图像中提取潜层的表征;S2、判别步骤:将病理图像作为判别器D的输入,训练一个二分类模型,通过判别器D区分有标签和无标签的样本数据集,得到概率值;S3、样本标注步骤:设置样本选择策略ALHS,根据判别器的输出概率值分布通过样本选择策略ALHS选择未标注的样本进行标注,实现病理数据集的自动标注。本发明能够极大减轻病理学家标注数据集的沉重负担,能够缓解样本冗余问题,提高样本选择的质量;能够极大地节省样本标注成本;通用性强,能适用于类不平衡和噪声样本的场合。
-
公开(公告)号:CN114972568A
公开(公告)日:2022-08-30
申请号:CN202210623258.1
申请日:2022-06-01
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06T11/00 , G06V10/44 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04
Abstract: 本发明涉及一种基于生成对抗网络的两阶段图像生成方法,包括:图像特征生成步骤:通过残差网络捕获输入图像的特征,训练一个特征生成网络,使用GAN拟合图像经过捕获网络后的特征进而得到特征生成器,并通过判别器区分图像经过捕获网络的特征和特征生成器生成的特征;图像生成步骤:固定图像特征生成步骤训练得到的特征生成器的参数,加入到新的图像生成网络,让随机噪声先经过特征生成器,然后将输出传入到图像生成器中得到最终生成的图像。本发明在阶段一先通过一个生成网络学习图像的特征,然后在阶段二通过对抗网络生成图像。相比于传统的GAN优化方法,能够降低GAN的训练难度、提高生成模式的多样性、提升图像生成质量。
-
公开(公告)号:CN114625842B
公开(公告)日:2024-11-29
申请号:CN202210304001.X
申请日:2022-03-25
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06F16/33 , G06F16/35 , G06F16/36 , G06F40/211 , G06F40/216 , G06F40/242 , G06F40/289 , G06F40/30 , G06F18/24 , G06N3/0442 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于结构注意力增强机制的虚假评论识别装置,它包括层次化语义网络和结构注意力增强机制网络;所述层次化语义网络以预训练的词向量为输入层,通过层次化神经网络学习评论文本词‑句‑段的文本表示,词‑句层利用词嵌入特征学习评论文本的句子表示,完成词语级别的建模,句‑段层通过词‑句层的句子向量生成评论文本的整体段落表示,完成语篇级别的建模;所述结构注意力增强机制网络用于学习上下文的连贯性矩阵和对文本结构单元做非前后文关系的自由语序的增强表示。本发明着重对评论文本的词‑句‑段的层次化结构进行了特征提取,并在层次表示中嵌入结构注意力增强机制,以增强弱结构单元的非线性语义表达。
-
公开(公告)号:CN118351016A
公开(公告)日:2024-07-16
申请号:CN202410570782.6
申请日:2024-05-09
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06T5/70 , G06T5/60 , G06T7/00 , G06N3/0455 , G06N3/0475 , G06N3/094 , G06N3/092
Abstract: 本发明涉及一种生成对抗网络梯度自适应低剂量CT去噪方法,属于图像处理领域,包括:利用编码器将低剂量CT图像映射到高维工具,得到低剂量图像的隐藏层表示和去噪结果;将RGA‑GAN模型中生成器的第四层残差块的输出作为图像的隐层特征输入到智能体网络中,得到强化学习的策略,基于策略在每次迭代中选择最合适的对抗损失用于更新RGA‑GAN模型,为模型选择最佳优化方向;于损失函数和强化学习的策略不断更新RGA‑GAN模型的生成器和判别器,每次更新后,更新强化学习的奖励,再对智能体网络进行更新。本发明能够根据样本特征选择适当的对抗损失和损失函数,以实现更精确的目标导向和最优控制。
-
公开(公告)号:CN117221205A
公开(公告)日:2023-12-12
申请号:CN202311293310.2
申请日:2023-10-08
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明涉及一种异构传感器网络非同步数据收集方法,包括:通过任务选择器选择最合适的目标传感器作为移动接收器的访问目标,使用图注意力网络来嵌入输入图,并输出下一个目标传感器作为移动接收器将访问的目标传感器;使用深度Q学习网络训练移动接收器控制器,自动控制移动接收器飞向访问目标传感器;不断重复上述内容直到移动接收器控制器逐渐收敛到最优策略后停止,移动接收器沿着可访问的路径在数据生成的有效时间窗内移动到目标传感器完成数据传输收集任务。本发明能够更精确地找到最优路径,并考虑到能量和数据传输的约束条件,采用两阶段启发式计算方法,将问题分解成任务选择和MS控制两个部分,降低了计算复杂度。
-
公开(公告)号:CN116843661A
公开(公告)日:2023-10-03
申请号:CN202310839302.7
申请日:2023-07-10
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06T7/00 , G06T7/10 , G06N3/0455 , G06N3/096
Abstract: 本发明公开了一种肺炎医学图像分割方法,该方法包括S1:对收集的肺炎数据集进行预处理;S2:预训练标准概率模型;S3:预训练编解码模块;将需要分割的肺炎医学数据集输入到预训练后的标准概率模型中,得到加了噪声的标注图像;S5:将得到加了噪声的标注图像送入训练后的编解码模块,得到变换结果;S6:将变换结果经过编解码模块的编码层下采样,经过两个编码层后,得到隐层特征,并将隐层特征还原到原图尺寸,得到分割图像,通过标准概率模型,神经网络可以很好地学习带有噪声的病灶特征,并将其与输入图像特征融合,本申请构建了一个编解码器模块,让神经网络学习分割新冠病灶区域的能力,优化了损失函数,使模型更容易收敛。
-
-
-
-
-
-
-
-
-