-
公开(公告)号:CN114626481B
公开(公告)日:2025-04-18
申请号:CN202210314022.X
申请日:2022-03-28
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06F18/214 , G06F18/213 , G06F18/241 , G06N3/0464 , G06N3/048 , G06N3/08 , G06F16/2458
Abstract: 本发明涉及一种基于类特征的多尺度度量少样本学习方法,包括:S1、数据预处理步骤;S2、特征嵌入步骤;S3、类特征提取步骤:通过动态路由机制融合支撑集同类的多个样本特征,并通过迭代的方式数输入向量的权重向量进行更新得到类整体特征;S4、多尺度度量步骤:通过融合三种度量准则对支撑集类特征与查询集样本之间进行相似度度量。本发明采用动态路由机制生成类整体特征,相比于直接加权平均的算法,通过该算法得到的类整体特征更具有代表性。在度量模块中,在有参网络的度量方法中引入了注意力机制,另外结合了多种度量方式的优劣,共同决定样本特征间相似度,从而得到了表现力更好的CFMMN网络模型。
-
公开(公告)号:CN114626481A
公开(公告)日:2022-06-14
申请号:CN202210314022.X
申请日:2022-03-28
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06K9/62 , G06N3/04 , G06N3/08 , G06F16/2458
Abstract: 本发明涉及一种基于类特征的多尺度度量少样本学习方法,包括:S1、数据预处理步骤;S2、特征嵌入步骤;S3、类特征提取步骤:通过动态路由机制融合支撑集同类的多个样本特征,并通过迭代的方式数输入向量的权重向量进行更新得到类整体特征;S4、多尺度度量步骤:通过融合三种度量准则对支撑集类特征与查询集样本之间进行相似度度量。本发明采用动态路由机制生成类整体特征,相比于直接加权平均的算法,通过该算法得到的类整体特征更具有代表性。在度量模块中,在有参网络的度量方法中引入了注意力机制,另外结合了多种度量方式的优劣,共同决定样本特征间相似度,从而得到了表现力更好的CFMMN网络模型。
-
公开(公告)号:CN114625842B
公开(公告)日:2024-11-29
申请号:CN202210304001.X
申请日:2022-03-25
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06F16/33 , G06F16/35 , G06F16/36 , G06F40/211 , G06F40/216 , G06F40/242 , G06F40/289 , G06F40/30 , G06F18/24 , G06N3/0442 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于结构注意力增强机制的虚假评论识别装置,它包括层次化语义网络和结构注意力增强机制网络;所述层次化语义网络以预训练的词向量为输入层,通过层次化神经网络学习评论文本词‑句‑段的文本表示,词‑句层利用词嵌入特征学习评论文本的句子表示,完成词语级别的建模,句‑段层通过词‑句层的句子向量生成评论文本的整体段落表示,完成语篇级别的建模;所述结构注意力增强机制网络用于学习上下文的连贯性矩阵和对文本结构单元做非前后文关系的自由语序的增强表示。本发明着重对评论文本的词‑句‑段的层次化结构进行了特征提取,并在层次表示中嵌入结构注意力增强机制,以增强弱结构单元的非线性语义表达。
-
公开(公告)号:CN114756651B
公开(公告)日:2025-02-25
申请号:CN202210333887.0
申请日:2022-03-30
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06F16/334 , G06F16/36 , G06F40/295 , G06N5/02
Abstract: 本发明涉及一种基于四元数旋转的时序知识图谱表示学习方法,包括:S1、给定一个四元组(h,r,t,τ),其中,h表示头实体,r表示关系,t表示尾实体,τ表示时间戳,将实体和时间信息进行融合并进行四元数空间中的旋转,完成模型的构建;S2、为了衡量四元组的有效性以及基于向量之间的夹角来衡量向量之间的相似性,设置评分函数对样本进行评分,并设置损失函数、参数正则化和设置时间平滑约束得到目标函数;S3、通过在时序知识图谱上的链接预测性能评估模型性能。本发明将实体随时间的动态演化特性建模为四元数空间中的旋转变换,能有效表达时序知识图谱中的复杂关系模型,通过添加参数正则化项和时序平滑约束项,可以有效提升原本模型的性能。
-
公开(公告)号:CN119152121A
公开(公告)日:2024-12-17
申请号:CN202411362684.X
申请日:2024-09-27
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06T17/00 , G06T9/00 , G06N3/0464 , G06N3/0475 , G06N3/08
Abstract: 本发明公开了基于深度学习的单视图三维物体重建方法,涉及计算机视觉领域,包括S1、构建物体重建模型,物体重建模型包括图像编码器、生成器G和鉴别器D,图像编码器用于从单视图图像中提取高层次特征,并通过重参数化技巧将高层次特征转化为潜在向量;S2、获取训练数据集;S3、训练数据集导入物体重建模型,并对物体重建模型进行训练优化,获得优化后的物体重建模型;S4、获取待重建的数据;S5、利用优化后的物体重建模型对待重建的数据进行三维物体重建;采用先进的神经网络架构,生成对抗网络GAN和图像编码器VAE,并在GAN网络中添加空间注意力机制来挖掘单视图图像中的深层特征和空间关系,从而提升3D物体重建的精度和鲁棒性。
-
公开(公告)号:CN114756651A
公开(公告)日:2022-07-15
申请号:CN202210333887.0
申请日:2022-03-30
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06F16/33 , G06F16/36 , G06F40/295
Abstract: 本发明涉及一种基于四元数旋转的时序知识图谱表示学习方法,包括:S1、给定一个四元组(h,r,t,τ),其中,h表示头实体,r表示关系,t表示尾实体,τ表示时间戳,将实体和时间信息进行融合并进行四元数空间中的旋转,完成模型的构建;S2、为了衡量四元组的有效性以及基于向量之间的夹角来衡量向量之间的相似性,设置评分函数对样本进行评分,并设置损失函数、参数正则化和设置时间平滑约束得到目标函数;S3、通过在时序知识图谱上的链接预测性能评估模型性能。本发明将实体随时间的动态演化特性建模为四元数空间中的旋转变换,能有效表达时序知识图谱中的复杂关系模型,通过添加参数正则化项和时序平滑约束项,可以有效提升原本模型的性能。
-
公开(公告)号:CN114625842A
公开(公告)日:2022-06-14
申请号:CN202210304001.X
申请日:2022-03-25
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06F16/33 , G06F16/35 , G06F16/36 , G06F40/211 , G06F40/216 , G06F40/242 , G06F40/289 , G06F40/30 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于结构注意力增强机制的虚假评论识别模型,它包括层次化语义网络和结构注意力增强机制网络;所述层次化语义网络以预训练的词向量为输入层,通过层次化神经网络学习评论文本词‑句‑段的文本表示,词‑句层利用词嵌入特征学习评论文本的句子表示,完成词语级别的建模,句‑段层通过词‑句层的句子向量生成评论文本的整体段落表示,完成语篇级别的建模;所述结构注意力增强机制网络用于学习上下文的连贯性矩阵和对文本结构单元做非前后文关系的自由语序的增强表示。本发明着重对评论文本的词‑句‑段的层次化结构进行了特征提取,并在层次表示中嵌入结构注意力增强机制,以增强弱结构单元的非线性语义表达。
-
公开(公告)号:CN114972790B
公开(公告)日:2024-12-20
申请号:CN202210625461.2
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/0464
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法、电子设备及存储介质,涉及计算机视觉领域。获取已标注类型标签的多张图像样本。针对每一张图像样本,将图像样本输入至图像分类模型,在图像分类模型中的任意一层卷积层中,从图像样本中提取出多张具有不同通道的特征图像。其中,不同通道表征图像样本不同的图像特征。利用预测得到的图像样本的类型标签和特征图像的类型标签,以及该图像样本已标注的类型标签,计算得到图像分类模型的损失值,基于该损失值调整图像分类模型的参数。重复执行上述步骤,以使可以达到预期训练目标。如此,由于没有增加输入图像分类模型的图像样本的数量,使得每次模型训练耗费的时间更少。
-
公开(公告)号:CN118379208A
公开(公告)日:2024-07-23
申请号:CN202410816691.6
申请日:2024-06-24
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了一种基于混合损失函数扩散模型的增强CT图像生成方法及装置,该方法包括:采集CT图像数据及其配对的造影剂增强CT图像数据,并采用数据增强方法和面向数据的正则化方法对其进行预处理,以按比例划分为训练集、测试集和验证集;构建用于生成造影剂增强CT图像的扩散模型;使用训练集对扩散模型进行迭代训练,基于混合损失函数调整扩散模型的参数,以获取训练好的扩散模型;将测试集中的CT图像数据输入至训练好的扩散模型中,得到对应的造影剂增强CT图像数据。本发明能够生成清晰可靠的造影剂增强CT图像,能够更好地捕捉数据分布的特征,提高了对不同特征的感知能力,增强了合成图像的质量,提高了模型的泛化性。
-
公开(公告)号:CN116741380A
公开(公告)日:2023-09-12
申请号:CN202310743593.X
申请日:2023-06-21
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G16H50/30 , G06V10/774 , G06V10/80 , G06V10/764 , G06T7/10
Abstract: 本发明公开了肝胆管细胞癌术后的复发情况预测方法,涉及计算机技术领域,包括S1构建复发情况预测模型,复发情况预测模型包括图像分割模块、指标数据分析模块和预测分析模块;S2获取训练数据集,训练数据包括CT图像和病例指标;S3训练数据集导入复发情况预测模型,并对其进行训练优化;S4获取待预测数据;S5利用优化后的复发情况预测模型对待预测数据进行分析得到,肝胆管细胞癌术后的复发情况;除了对CT图像进行充分利用外,本方法还将病例所对应的指标数据与其图像数据进行了融合使用,以补充CT图像无法表达的信息。通过不断地优化训练,最终得到了具有良好性能的术后复发情况预测模型。
-
-
-
-
-
-
-
-
-