-
公开(公告)号:CN114972791B
公开(公告)日:2025-04-25
申请号:CN202210626206.X
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/096
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法及相关装置,涉及图像处理领域。首先,获取原始图像及原始图像的类型标签;将原始图像输入预先构建的图像分类模型,图像分类模型包括特征提取网络和类型预测网络,特征提取网络包括N个依次串联的卷积层;再利用特征提取网络对原始图像进行特征提取,得到第N个所述卷积层输出的第一特征图和第N‑1个卷积层输出的第二特征图;基于第一特征图、类型标签和预设的多个二值掩码,生成第一训练集,基于第二特征图、类型标签和多个二值掩码,生成第二训练集;最后,利用第一训练集和第二训练集对类型预测网络进行训练,得到训练后的图像分类模型,从而减少模型训练过程产生的额外开销。
-
公开(公告)号:CN114626481B
公开(公告)日:2025-04-18
申请号:CN202210314022.X
申请日:2022-03-28
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06F18/214 , G06F18/213 , G06F18/241 , G06N3/0464 , G06N3/048 , G06N3/08 , G06F16/2458
Abstract: 本发明涉及一种基于类特征的多尺度度量少样本学习方法,包括:S1、数据预处理步骤;S2、特征嵌入步骤;S3、类特征提取步骤:通过动态路由机制融合支撑集同类的多个样本特征,并通过迭代的方式数输入向量的权重向量进行更新得到类整体特征;S4、多尺度度量步骤:通过融合三种度量准则对支撑集类特征与查询集样本之间进行相似度度量。本发明采用动态路由机制生成类整体特征,相比于直接加权平均的算法,通过该算法得到的类整体特征更具有代表性。在度量模块中,在有参网络的度量方法中引入了注意力机制,另外结合了多种度量方式的优劣,共同决定样本特征间相似度,从而得到了表现力更好的CFMMN网络模型。
-
公开(公告)号:CN119323803A
公开(公告)日:2025-01-17
申请号:CN202411874279.6
申请日:2024-12-19
Applicant: 衢州海易科技有限公司 , 电子科技大学长三角研究院(衢州) , 衢州学院 , 衢州市公安局交通警察支队
Inventor: 吴磊 , 程凯 , 单文煜 , 陈鹏 , 周小龙 , 黄忠京 , 刘明 , 曹曙烽 , 夏云霓 , 陈坚武 , 岑沛丰 , 詹虎山 , 柴凌勇 , 李俊 , 李曦 , 何东飞 , 刘念伯 , 曾晟珂 , 李秀华
IPC: G06V40/10 , G06V10/74 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/084 , G06N3/088
Abstract: 本发明公开了一种基于深度学习面向车路协同的行人检索方法,属于行人重识别技术领域,包括以下步骤:建立训练集;在ReID模型中设置一个无监督鉴别器网络结构;S3:使用训练集通过预热学习对ReID模型进行预设数量回合的迭代训练;完成预设数量回合的训练后,部署训练好的ReID模型;将待识别图像输入训练完成的ReID模型中,根据自适应阈值n,选取前n%的结果,判定为目标人物,得到检测结果,本申请在ReID模型中引入了无监督鉴别器网络结构,不仅提高了特征的代表性和区分能力,还显著提升了行人识别的准确率,本申请还设置了行人阈值n的判定,保证了检索的高效性和精准性。
-
公开(公告)号:CN118941670A
公开(公告)日:2024-11-12
申请号:CN202411201472.3
申请日:2024-08-29
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了基于图神经网络的人体图像生成方法,涉及人工智能领域,包括S1、构建初始的人体图像生成模型S2、获取实验数据集;S3、实验数据集导入初始的人体图像生成模型,并构建损失函数Lfull作为人体图像生成模型的约束条件,通过反向传播和梯度下降算法进行训练优化得到优化后的人体图像生成模型;S4、获取待生成的人体图像;S5、利用优化后的人体图像生成模型生成待生成的人体图像的人体图形;利用各向同性特征提取模块和图形信息模块,有效处理人体图像的非均匀特征和多尺度属性;各向同性特征提取模块的分层结构与人的异质组成部分相匹配,提高特征提取的准确性和灵活性;图形信息模块的设计鼓励特征在不同层次间的转换,增强了对细节的捕捉能力,包括服装纹理等。
-
公开(公告)号:CN118521537A
公开(公告)日:2024-08-20
申请号:CN202410584214.1
申请日:2024-05-11
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06T7/00 , G06V10/764 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0464
Abstract: 本发明涉及一种疾病超声图像诊断预测方法,属于图像分析领域,所述诊断预测方法包括:将经过数据预处理后的甲状腺超声图像分别通过第一模型提取全局信息特性向量组,通过第二模型提取甲状腺结节病理组织信息特性向量组,通过第三模型提取正常健康组织信息特性向量组;将提取的三种信息的特征向量组拼接在一起后输入一个全连接层,全连接层根据学习动态选择不同特征的权重,最终计算出甲状腺超声图像的良恶性概率。本发明使用全图进行预测,不再依赖于人工标注感兴趣区域,可以直接用于临床诊断,有着更好的结合性,同时实现了对于不同来源超声图像的无差别预测,有着较好的实际应用性类似所提出的策略。
-
公开(公告)号:CN116091860A
公开(公告)日:2023-05-09
申请号:CN202211492454.6
申请日:2022-11-25
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/774 , G06V10/20 , G06V10/764 , G06V10/82 , G06T7/11 , G06T3/40
Abstract: 本发明涉及一种丰富数据模式的数据增强方法,包括:将每个样本图像框选一个与样本图像大小一样的图像框,将样本图像朝图像框某一个方向移动,且移动的距离小于移动方向上样本图像的长度;将移出图像框外的图像信息作为填充部分重新填充会完成图像移动步骤后图像框中的空白区域,与图像框内的图像信息构成跟原始样本图像大小相同的新样本图像,实现样本数据的增强。本发明通过简单有效地操作,产生新的训练样本,可以在已有的数据增强方法上无缝叠加,能在已有的数据增强方法产生的样本基础上,生成更多的新的训练样本,而更多的训练样本意味着训练数据集具有更为丰富的数据模式,从而提高网络模型的性能,以及网络模型的鲁棒性和泛化性。
-
公开(公告)号:CN114972791A
公开(公告)日:2022-08-30
申请号:CN202210626206.X
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法及相关装置,涉及图像处理领域。首先,获取原始图像及原始图像的类型标签;将原始图像输入预先构建的图像分类模型,图像分类模型包括特征提取网络和类型预测网络,特征提取网络包括N个依次串联的卷积层;再利用特征提取网络对原始图像进行特征提取,得到第N个所述卷积层输出的第一特征图和第N‑1个卷积层输出的第二特征图;基于第一特征图、类型标签和预设的多个二值掩码,生成第一训练集,基于第二特征图、类型标签和多个二值掩码,生成第二训练集;最后,利用第一训练集和第二训练集对类型预测网络进行训练,得到训练后的图像分类模型,从而减少模型训练过程产生的额外开销。
-
公开(公告)号:CN114972790A
公开(公告)日:2022-08-30
申请号:CN202210625461.2
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/04
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法、电子设备及存储介质,涉及计算机视觉领域。获取已标注类型标签的多张图像样本。针对每一张图像样本,将图像样本输入至图像分类模型,在图像分类模型中的任意一层卷积层中,从图像样本中提取出多张具有不同通道的特征图像。其中,不同通道表征图像样本不同的图像特征。利用预测得到的图像样本的类型标签和特征图像的类型标签,以及该图像样本已标注的类型标签,计算得到图像分类模型的损失值,基于该损失值调整图像分类模型的参数。重复执行上述步骤,以使可以达到预期训练目标。如此,由于没有增加输入图像分类模型的图像样本的数量,使得每次模型训练耗费的时间更少。
-
公开(公告)号:CN114626481A
公开(公告)日:2022-06-14
申请号:CN202210314022.X
申请日:2022-03-28
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06K9/62 , G06N3/04 , G06N3/08 , G06F16/2458
Abstract: 本发明涉及一种基于类特征的多尺度度量少样本学习方法,包括:S1、数据预处理步骤;S2、特征嵌入步骤;S3、类特征提取步骤:通过动态路由机制融合支撑集同类的多个样本特征,并通过迭代的方式数输入向量的权重向量进行更新得到类整体特征;S4、多尺度度量步骤:通过融合三种度量准则对支撑集类特征与查询集样本之间进行相似度度量。本发明采用动态路由机制生成类整体特征,相比于直接加权平均的算法,通过该算法得到的类整体特征更具有代表性。在度量模块中,在有参网络的度量方法中引入了注意力机制,另外结合了多种度量方式的优劣,共同决定样本特征间相似度,从而得到了表现力更好的CFMMN网络模型。
-
公开(公告)号:CN114625842B
公开(公告)日:2024-11-29
申请号:CN202210304001.X
申请日:2022-03-25
Applicant: 电子科技大学长三角研究院(衢州) , 衢州海易科技有限公司
IPC: G06F16/33 , G06F16/35 , G06F16/36 , G06F40/211 , G06F40/216 , G06F40/242 , G06F40/289 , G06F40/30 , G06F18/24 , G06N3/0442 , G06N3/048 , G06N3/08
Abstract: 本发明涉及一种基于结构注意力增强机制的虚假评论识别装置,它包括层次化语义网络和结构注意力增强机制网络;所述层次化语义网络以预训练的词向量为输入层,通过层次化神经网络学习评论文本词‑句‑段的文本表示,词‑句层利用词嵌入特征学习评论文本的句子表示,完成词语级别的建模,句‑段层通过词‑句层的句子向量生成评论文本的整体段落表示,完成语篇级别的建模;所述结构注意力增强机制网络用于学习上下文的连贯性矩阵和对文本结构单元做非前后文关系的自由语序的增强表示。本发明着重对评论文本的词‑句‑段的层次化结构进行了特征提取,并在层次表示中嵌入结构注意力增强机制,以增强弱结构单元的非线性语义表达。
-
-
-
-
-
-
-
-
-