-
公开(公告)号:CN114972568A
公开(公告)日:2022-08-30
申请号:CN202210623258.1
申请日:2022-06-01
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06T11/00 , G06V10/44 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04
Abstract: 本发明涉及一种基于生成对抗网络的两阶段图像生成方法,包括:图像特征生成步骤:通过残差网络捕获输入图像的特征,训练一个特征生成网络,使用GAN拟合图像经过捕获网络后的特征进而得到特征生成器,并通过判别器区分图像经过捕获网络的特征和特征生成器生成的特征;图像生成步骤:固定图像特征生成步骤训练得到的特征生成器的参数,加入到新的图像生成网络,让随机噪声先经过特征生成器,然后将输出传入到图像生成器中得到最终生成的图像。本发明在阶段一先通过一个生成网络学习图像的特征,然后在阶段二通过对抗网络生成图像。相比于传统的GAN优化方法,能够降低GAN的训练难度、提高生成模式的多样性、提升图像生成质量。