一种肺炎医学图像分割方法
    1.
    发明公开

    公开(公告)号:CN116843661A

    公开(公告)日:2023-10-03

    申请号:CN202310839302.7

    申请日:2023-07-10

    Abstract: 本发明公开了一种肺炎医学图像分割方法,该方法包括S1:对收集的肺炎数据集进行预处理;S2:预训练标准概率模型;S3:预训练编解码模块;将需要分割的肺炎医学数据集输入到预训练后的标准概率模型中,得到加了噪声的标注图像;S5:将得到加了噪声的标注图像送入训练后的编解码模块,得到变换结果;S6:将变换结果经过编解码模块的编码层下采样,经过两个编码层后,得到隐层特征,并将隐层特征还原到原图尺寸,得到分割图像,通过标准概率模型,神经网络可以很好地学习带有噪声的病灶特征,并将其与输入图像特征融合,本申请构建了一个编解码器模块,让神经网络学习分割新冠病灶区域的能力,优化了损失函数,使模型更容易收敛。

Patent Agency Ranking