-
公开(公告)号:CN114913343A
公开(公告)日:2022-08-16
申请号:CN202210674288.5
申请日:2022-06-14
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06N3/04 , G06N3/08 , G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本发明涉及一种基于通道自监督的在线知识蒸馏方法,包括:粗粒度特征提取步骤:将数据进行归一化处理后的输出结果output分别输入到两个网络模型中进行特征提取;自监督学习步骤:将经过粗粒度特征提取步骤后的特征图输入到样本多样性模块中进行特征转换操作,对数据输出不同的联合标签;在线动态蒸馏步骤:通过对两个网络模型分别设置一个动态系数对具有同样特征转换的分支之间进行相互学习,不断优化两个网络多样性模块的权重,并在损失函数值最小时输出输入样本的标签。本发明随着样本、网络和分支多样性的增强,样本数据量变大,人工标注标签任务繁琐,在知识蒸馏中加入自监督学习,使其不需要人工干预,可以降低成本和资源。
-
公开(公告)号:CN119400366A
公开(公告)日:2025-02-07
申请号:CN202411500354.2
申请日:2024-10-25
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G16H30/40 , G16H50/50 , G06N3/096 , G06T7/00 , G06V10/774 , G06V10/82 , G06V10/764
Abstract: 本发明涉及一种利用术前CT图像对转换疗法进行预测的方法,属于图像处理领域,包括:对数据进行预处理得到用于对深度学习模型进行训练的图像;在知识蒸馏的基础上加入多次模型迭代,并引入标签平滑、余弦动态学习率调整和模型噪声,得到对模型进行训练的渐进式蒸馏方法;按照设定比例划分的训练集和测试集对采用EfficientNet并加载ImageNet的模型进行多轮次训练和测试,并通过经过多轮次训练和测试后的最终模型进行预测,得到预测结果。本发明能够将原发性肿瘤的计算机断层扫描征象与人工智能相结合,预测胃癌晚期患者对转换疗法的反应,产生很好的诊断效果。
-
公开(公告)号:CN119067992A
公开(公告)日:2024-12-03
申请号:CN202411174674.3
申请日:2024-08-26
Applicant: 电子科技大学长三角研究院(衢州) , 衢州学院
IPC: G06T7/11 , G06T5/70 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0895
Abstract: 本发明公开了一种应用深度学习在CT切片图像上分割肝脏肿瘤的方法。该方法引入了一个名为MPVT+的神经网络框架,用于在带有噪声标签的数据集上训练肝脏肿瘤的分割模型。通过使用对噪声具有鲁棒性的适配器模型方法,MPVT+模型能够有效地适配并筛选训练数据集中的噪声标签,从而减少噪声对神经网络的干扰。此外,MPVT+模型还通过半监督学习方法增强其泛化能力,使其能够高效地学习复杂的CT切片图像特征。在测试数据集上,该模型的索伦森‑戴斯系数为80.29%,雅卡尔指数为68.68%,对称体积差为19.71%,体积重叠误差为31.32%。该模型可以无创地使用CT图像分割并定位肝脏内的肿瘤,从而成为帮助医生制定各种肝脏肿瘤治疗策略的潜在工具。
-
公开(公告)号:CN118379208B
公开(公告)日:2024-10-29
申请号:CN202410816691.6
申请日:2024-06-24
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明公开了一种基于混合损失函数扩散模型的增强CT图像生成方法及装置,该方法包括:采集CT图像数据及其配对的造影剂增强CT图像数据,并采用数据增强方法和面向数据的正则化方法对其进行预处理,以按比例划分为训练集、测试集和验证集;构建用于生成造影剂增强CT图像的扩散模型;使用训练集对扩散模型进行迭代训练,基于混合损失函数调整扩散模型的参数,以获取训练好的扩散模型;将测试集中的CT图像数据输入至训练好的扩散模型中,得到对应的造影剂增强CT图像数据。本发明能够生成清晰可靠的造影剂增强CT图像,能够更好地捕捉数据分布的特征,提高了对不同特征的感知能力,增强了合成图像的质量,提高了模型的泛化性。
-
公开(公告)号:CN114972791B
公开(公告)日:2025-04-25
申请号:CN202210626206.X
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/096
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法及相关装置,涉及图像处理领域。首先,获取原始图像及原始图像的类型标签;将原始图像输入预先构建的图像分类模型,图像分类模型包括特征提取网络和类型预测网络,特征提取网络包括N个依次串联的卷积层;再利用特征提取网络对原始图像进行特征提取,得到第N个所述卷积层输出的第一特征图和第N‑1个卷积层输出的第二特征图;基于第一特征图、类型标签和预设的多个二值掩码,生成第一训练集,基于第二特征图、类型标签和多个二值掩码,生成第二训练集;最后,利用第一训练集和第二训练集对类型预测网络进行训练,得到训练后的图像分类模型,从而减少模型训练过程产生的额外开销。
-
公开(公告)号:CN114972791A
公开(公告)日:2022-08-30
申请号:CN202210626206.X
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法及相关装置,涉及图像处理领域。首先,获取原始图像及原始图像的类型标签;将原始图像输入预先构建的图像分类模型,图像分类模型包括特征提取网络和类型预测网络,特征提取网络包括N个依次串联的卷积层;再利用特征提取网络对原始图像进行特征提取,得到第N个所述卷积层输出的第一特征图和第N‑1个卷积层输出的第二特征图;基于第一特征图、类型标签和预设的多个二值掩码,生成第一训练集,基于第二特征图、类型标签和多个二值掩码,生成第二训练集;最后,利用第一训练集和第二训练集对类型预测网络进行训练,得到训练后的图像分类模型,从而减少模型训练过程产生的额外开销。
-
公开(公告)号:CN114972790A
公开(公告)日:2022-08-30
申请号:CN202210625461.2
申请日:2022-06-02
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/44 , G06V10/764 , G06V10/774 , G06V10/776 , G06V10/82 , G06N3/04
Abstract: 本发明的实施例提供了一种图像分类模型训练方法、图像分类方法、电子设备及存储介质,涉及计算机视觉领域。获取已标注类型标签的多张图像样本。针对每一张图像样本,将图像样本输入至图像分类模型,在图像分类模型中的任意一层卷积层中,从图像样本中提取出多张具有不同通道的特征图像。其中,不同通道表征图像样本不同的图像特征。利用预测得到的图像样本的类型标签和特征图像的类型标签,以及该图像样本已标注的类型标签,计算得到图像分类模型的损失值,基于该损失值调整图像分类模型的参数。重复执行上述步骤,以使可以达到预期训练目标。如此,由于没有增加输入图像分类模型的图像样本的数量,使得每次模型训练耗费的时间更少。
-
公开(公告)号:CN119478530A
公开(公告)日:2025-02-18
申请号:CN202411631288.2
申请日:2024-11-15
Applicant: 浙江玉铉科技有限公司 , 电子科技大学长三角研究院(衢州)
IPC: G06V10/764 , G06N3/0455 , G06N3/0464 , G06N3/0895 , G06V10/82
Abstract: 本发明涉及一种基于迭代学习的肝肿瘤局灶性病变预测方法,属于计算机模型领域,包括:首先对部分医学影像数据中的病灶区域进行人工标注,得到ROI训练数据,并使用这些数据构建基于YOLOv8的自动化病灶检测模型。在ViT分类模型中,裁剪后的图像被划分为固定大小的图像块,并嵌入到高维空间中。随后,利用位置编码为每个图像块添加位置信息,以保留其空间关系。将嵌入序列输入到Transformer模块,并经过全连接层进行分类处理,最终输出预测的类别。本发明引入了动态学习策略,在不同的训练阶段动态调整损失函数中的样本权重,能够减轻模型的累积误差,同时有效地处理不确定样本。
-
公开(公告)号:CN118736461A
公开(公告)日:2024-10-01
申请号:CN202410817051.7
申请日:2024-06-24
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V20/40 , G06V10/82 , G06V10/764 , G06N3/0455 , G06N3/092 , G06N3/096 , G06N3/048 , G06N3/082
Abstract: 本发明公开了一种基于Vision‑Transformer和强化学习的PTFE乳液石蜡分离自动检测方法及装置,该方法包括:从不同视角采集图像并进行预处理,构建训练集和测试集;基于Vision‑Transformer和强化学习构建用于PTFE乳液石蜡分离检测的PatchRLNet模型;使用训练集对PatchRLNet模型进行迭代训练,基于交叉熵损失函数调整模型参数,以获取训练好的PatchRLNet模型;将测试集中的图像输入至训练好的PatchRLNet模型中,得到预测的图像类别。本发明能够自动化且智能化的进行PTFE乳液石蜡分离检测,有效提高了检测的准确性,减轻了工作人员的操作负担。
-
公开(公告)号:CN118657791A
公开(公告)日:2024-09-17
申请号:CN202410967844.7
申请日:2024-07-18
Applicant: 电子科技大学长三角研究院(衢州)
Abstract: 本发明涉及一种基于深度学习的疾病图像分割方法,包括:模型编码器的Stem部分对输入图像进行处理,在Stem后串联四个Mixed Layer,四个Mixed Layer依次对图像进行处理,且每个Mixed Layer将处理后的数据输入到下一个Mixed Layer;模型解码器通过五个Decoder Block串联组成,每个Decoder Block通过一个双线性上采样层和两个卷积层组成,前四个Decoder Block在通道维度连接来自跳跃连接的编码器潜层细节特征,并通过最后一个Decoder Block输出最终分割结果。本发明兼顾低计算成本、提取CT数据z轴特征的能力以及优越的分割性能。
-
-
-
-
-
-
-
-
-