一种基于四元数旋转的时序知识图谱表示学习方法

    公开(公告)号:CN114756651B

    公开(公告)日:2025-02-25

    申请号:CN202210333887.0

    申请日:2022-03-30

    Abstract: 本发明涉及一种基于四元数旋转的时序知识图谱表示学习方法,包括:S1、给定一个四元组(h,r,t,τ),其中,h表示头实体,r表示关系,t表示尾实体,τ表示时间戳,将实体和时间信息进行融合并进行四元数空间中的旋转,完成模型的构建;S2、为了衡量四元组的有效性以及基于向量之间的夹角来衡量向量之间的相似性,设置评分函数对样本进行评分,并设置损失函数、参数正则化和设置时间平滑约束得到目标函数;S3、通过在时序知识图谱上的链接预测性能评估模型性能。本发明将实体随时间的动态演化特性建模为四元数空间中的旋转变换,能有效表达时序知识图谱中的复杂关系模型,通过添加参数正则化项和时序平滑约束项,可以有效提升原本模型的性能。

    基于深度学习的单视图三维物体重建方法

    公开(公告)号:CN119152121A

    公开(公告)日:2024-12-17

    申请号:CN202411362684.X

    申请日:2024-09-27

    Abstract: 本发明公开了基于深度学习的单视图三维物体重建方法,涉及计算机视觉领域,包括S1、构建物体重建模型,物体重建模型包括图像编码器、生成器G和鉴别器D,图像编码器用于从单视图图像中提取高层次特征,并通过重参数化技巧将高层次特征转化为潜在向量;S2、获取训练数据集;S3、训练数据集导入物体重建模型,并对物体重建模型进行训练优化,获得优化后的物体重建模型;S4、获取待重建的数据;S5、利用优化后的物体重建模型对待重建的数据进行三维物体重建;采用先进的神经网络架构,生成对抗网络GAN和图像编码器VAE,并在GAN网络中添加空间注意力机制来挖掘单视图图像中的深层特征和空间关系,从而提升3D物体重建的精度和鲁棒性。

    一种基于四元数旋转的时序知识图谱表示学习方法

    公开(公告)号:CN114756651A

    公开(公告)日:2022-07-15

    申请号:CN202210333887.0

    申请日:2022-03-30

    Abstract: 本发明涉及一种基于四元数旋转的时序知识图谱表示学习方法,包括:S1、给定一个四元组(h,r,t,τ),其中,h表示头实体,r表示关系,t表示尾实体,τ表示时间戳,将实体和时间信息进行融合并进行四元数空间中的旋转,完成模型的构建;S2、为了衡量四元组的有效性以及基于向量之间的夹角来衡量向量之间的相似性,设置评分函数对样本进行评分,并设置损失函数、参数正则化和设置时间平滑约束得到目标函数;S3、通过在时序知识图谱上的链接预测性能评估模型性能。本发明将实体随时间的动态演化特性建模为四元数空间中的旋转变换,能有效表达时序知识图谱中的复杂关系模型,通过添加参数正则化项和时序平滑约束项,可以有效提升原本模型的性能。

    一种生成对抗网络梯度自适应低剂量CT去噪方法

    公开(公告)号:CN118351016A

    公开(公告)日:2024-07-16

    申请号:CN202410570782.6

    申请日:2024-05-09

    Abstract: 本发明涉及一种生成对抗网络梯度自适应低剂量CT去噪方法,属于图像处理领域,包括:利用编码器将低剂量CT图像映射到高维工具,得到低剂量图像的隐藏层表示和去噪结果;将RGA‑GAN模型中生成器的第四层残差块的输出作为图像的隐层特征输入到智能体网络中,得到强化学习的策略,基于策略在每次迭代中选择最合适的对抗损失用于更新RGA‑GAN模型,为模型选择最佳优化方向;于损失函数和强化学习的策略不断更新RGA‑GAN模型的生成器和判别器,每次更新后,更新强化学习的奖励,再对智能体网络进行更新。本发明能够根据样本特征选择适当的对抗损失和损失函数,以实现更精确的目标导向和最优控制。

    一种肺炎医学图像分割方法
    9.
    发明公开

    公开(公告)号:CN116843661A

    公开(公告)日:2023-10-03

    申请号:CN202310839302.7

    申请日:2023-07-10

    Abstract: 本发明公开了一种肺炎医学图像分割方法,该方法包括S1:对收集的肺炎数据集进行预处理;S2:预训练标准概率模型;S3:预训练编解码模块;将需要分割的肺炎医学数据集输入到预训练后的标准概率模型中,得到加了噪声的标注图像;S5:将得到加了噪声的标注图像送入训练后的编解码模块,得到变换结果;S6:将变换结果经过编解码模块的编码层下采样,经过两个编码层后,得到隐层特征,并将隐层特征还原到原图尺寸,得到分割图像,通过标准概率模型,神经网络可以很好地学习带有噪声的病灶特征,并将其与输入图像特征融合,本申请构建了一个编解码器模块,让神经网络学习分割新冠病灶区域的能力,优化了损失函数,使模型更容易收敛。

    一种基于通道自监督的在线知识蒸馏方法

    公开(公告)号:CN114913343A

    公开(公告)日:2022-08-16

    申请号:CN202210674288.5

    申请日:2022-06-14

    Abstract: 本发明涉及一种基于通道自监督的在线知识蒸馏方法,包括:粗粒度特征提取步骤:将数据进行归一化处理后的输出结果output分别输入到两个网络模型中进行特征提取;自监督学习步骤:将经过粗粒度特征提取步骤后的特征图输入到样本多样性模块中进行特征转换操作,对数据输出不同的联合标签;在线动态蒸馏步骤:通过对两个网络模型分别设置一个动态系数对具有同样特征转换的分支之间进行相互学习,不断优化两个网络多样性模块的权重,并在损失函数值最小时输出输入样本的标签。本发明随着样本、网络和分支多样性的增强,样本数据量变大,人工标注标签任务繁琐,在知识蒸馏中加入自监督学习,使其不需要人工干预,可以降低成本和资源。

Patent Agency Ranking