-
公开(公告)号:CN115937592A
公开(公告)日:2023-04-07
申请号:CN202211599181.5
申请日:2022-12-12
Applicant: 电子科技大学长三角研究院(衢州)
IPC: G06V10/764 , G06T7/00 , G06V10/40 , G06V10/82 , G06N3/088 , G06V10/774 , G16H30/20 , G06N3/0455
Abstract: 本发明涉及一种基于潜层表征的主动学习样本标注方法,述样本标注方法包括:S1、特征提取步骤:通过自动编码器模拟从病理图像中提取潜层的表征;S2、判别步骤:将病理图像作为判别器D的输入,训练一个二分类模型,通过判别器D区分有标签和无标签的样本数据集,得到概率值;S3、样本标注步骤:设置样本选择策略ALHS,根据判别器的输出概率值分布通过样本选择策略ALHS选择未标注的样本进行标注,实现病理数据集的自动标注。本发明能够极大减轻病理学家标注数据集的沉重负担,能够缓解样本冗余问题,提高样本选择的质量;能够极大地节省样本标注成本;通用性强,能适用于类不平衡和噪声样本的场合。