-
公开(公告)号:CN117315455B
公开(公告)日:2024-11-08
申请号:CN202310046948.X
申请日:2023-01-31
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明通过高分辨的遥感影像设计云信息表征指数、自适应阈值分割初步提取云体、几何特征过滤非云对象和提纯云体、设计形态学滤云算子进一步提纯精化,最后通过云体栅格转为矢量并统计云量实现检测,相比于机器学习和深度学习云检测方法对样本数据的依赖,本发明人工参与少、自动化程度高、检测结果具有显著的云团几何形态优势,仅利用云层的亮度和几何形态特征,实现对高分辨率遥感影像自动化精准云检测,检测过程简单,可为高分辨率影像的质量检查、无云影像筛选,以及云覆盖区域的影像补采、填补生成无云影像等生产工序提供支撑,具有较强的泛化性和实用性。
-
公开(公告)号:CN115661655B
公开(公告)日:2024-03-22
申请号:CN202211368443.7
申请日:2022-11-03
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/10 , G06V10/58 , G06V10/77 , G06V10/80 , G06V10/82 , G06V10/764 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种高光谱和高分影像深度特征融合的西南山区耕地提取方法,包括步骤:制作训练样本集;构建高光谱影像和高分影像协同双输入单输出语义分割卷积神经网络;输入所述训练样本集对高光谱影像和高分影像协同双输入单输出语义分割卷积神经网络进行训练;采用训练后的高光谱影像和高分影像协同双输入单输出语义分割卷积神经网络模型对待识别测试区影像进行处理,获得耕地提取结果。其显著效果是:设计了高光谱影像和高分影像协同的双输入单输出卷积神经网络,综合利用了高分辨率影像的空间结构特征和高光谱影像的光谱特征,实现了对西南山地区域耕地的精准提取,显著提高了目标提取精度。
-
公开(公告)号:CN114863291A
公开(公告)日:2022-08-05
申请号:CN202210416274.3
申请日:2022-04-20
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/13 , G06K9/62 , G06V10/762 , G06V10/764 , G06V10/58
Abstract: 本发明公开了一种基于MCL和光谱差异度量的高光谱影像波段选择方法,通过计算波段间的相关系数,构建波段间相关性的邻接矩阵,运用马尔可夫聚类自适应地将波段划分为多个聚簇,并基于聚类结果,设计目标类别监督下的波段差异性度量准则,选择出适于目标地物提取的波段集,最后利用监督分类算法,依据训练样本和测试样本确定最优波段数,实现目标地物的最高精度提取。其显著效果是:充分运用波段间邻近相关性和波段索引距离信息,并且考虑了噪声较大波段和坏道零值波段对聚类的影响,提高了波段聚簇划分的准确性和合理性,实现了选择最优波段和目标地物精准识别,具有解决实际问题的优势。
-
公开(公告)号:CN114863291B
公开(公告)日:2023-08-08
申请号:CN202210416274.3
申请日:2022-04-20
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/13 , G06V10/762 , G06V10/764 , G06V10/58
Abstract: 本发明公开了一种基于MCL和光谱差异度量的高光谱影像波段选择方法,通过计算波段间的相关系数,构建波段间相关性的邻接矩阵,运用马尔可夫聚类自适应地将波段划分为多个聚簇,并基于聚类结果,设计目标类别监督下的波段差异性度量准则,选择出适于目标地物提取的波段集,最后利用监督分类算法,依据训练样本和测试样本确定最优波段数,实现目标地物的最高精度提取。其显著效果是:充分运用波段间邻近相关性和波段索引距离信息,并且考虑了噪声较大波段和坏道零值波段对聚类的影响,提高了波段聚簇划分的准确性和合理性,实现了选择最优波段和目标地物精准识别,具有解决实际问题的优势。
-
-
公开(公告)号:CN118585589B
公开(公告)日:2024-12-06
申请号:CN202410623241.5
申请日:2024-05-20
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供了一种面向自然资源地表覆盖的像元光谱库构建方法,本发明基于国土三调或地理国情或其他自然资源地表覆盖空间矢量数据为基础,采用图斑筛选、像元采集点净化等方法,获得均质性较好的像元采集点,并形成包含时间、空间、光谱、标识等不同维度属性信息的像元光谱库。该方法不受高光谱影像辐射校正、大气校正中误差叠加影响,为自然资源地表覆盖精细识别提供了海量像元光谱库。
-
公开(公告)号:CN118585589A
公开(公告)日:2024-09-03
申请号:CN202410623241.5
申请日:2024-05-20
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供了一种面向自然资源地表覆盖的像元光谱库构建方法,本发明基于国土三调或地理国情或其他自然资源地表覆盖空间矢量数据为基础,采用图斑筛选、像元采集点净化等方法,获得均质性较好的像元采集点,并形成包含时间、空间、光谱、标识等不同维度属性信息的像元光谱库。该方法不受高光谱影像辐射校正、大气校正中误差叠加影响,为自然资源地表覆盖精细识别提供了海量像元光谱库。
-
公开(公告)号:CN117746250A
公开(公告)日:2024-03-22
申请号:CN202311852221.7
申请日:2023-12-29
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供了一种融合实景三维与视频的烟火智能识别与精准定位方法,首先利用深度学习方法在图像处理上的优势,采用双光谱云台摄像机进行实时自动识别,烟火识别精度高。其次在定位时,融合了实景三维信息和视频信息,烟火定位的精度高。最后分别通过实时识别烟火和定位烟火,实现了森林烟火自动实时识别和定位,减少人工工作量,提高了工作效率。
-
公开(公告)号:CN117315455A
公开(公告)日:2023-12-29
申请号:CN202310046948.X
申请日:2023-01-31
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明通过高分辨的遥感影像设计云信息表征指数、自适应阈值分割初步提取云体、几何特征过滤非云对象和提纯云体、设计形态学滤云算子进一步提纯精化,最后通过云体栅格转为矢量并统计云量实现检测,相比于机器学习和深度学习云检测方法对样本数据的依赖,本发明人工参与少、自动化程度高、检测结果具有显著的云团几何形态优势,仅利用云层的亮度和几何形态特征,实现对高分辨率遥感影像自动化精准云检测,检测过程简单,可为高分辨率影像的质量检查、无云影像筛选,以及云覆盖区域的影像补采、填补生成无云影像等生产工序提供支撑,具有较强的泛化性和实用性。
-
公开(公告)号:CN115880325A
公开(公告)日:2023-03-31
申请号:CN202211562504.3
申请日:2022-12-07
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06T7/181 , G06T5/00 , G06F18/2321
Abstract: 本发明提供了一种基于点云维度和空间距离聚类的建筑物轮廓自动提取方法,包括:S1、对带有真实地理坐标的激光点云进行去噪处理;S2、通过对所述激光点云进行点云滤波,分离场景中的地面点云及非地面点云;S3、计算所述非地面点云所属维度可能性,通过空间聚类分析获取建筑物点云;S4、获取建筑物点云轮廓,并拟合轮廓函数。本发明数据源采用激光点云,不仅能解决传统方法中由于遥感影像分辨率低导致的地物分类不准确等问题,也能面向大场景开展建筑物轮廓提取,还通过计算点云所属维度,从非地面点云中分离现状点云、面状点云和散状点云,再依据空间距离聚类方法准确提取建筑物点云。不光使得提取建筑物点云的结果更精确,还提升了效率。
-
-
-
-
-
-
-
-
-