-
公开(公告)号:CN114863291B
公开(公告)日:2023-08-08
申请号:CN202210416274.3
申请日:2022-04-20
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/13 , G06V10/762 , G06V10/764 , G06V10/58
Abstract: 本发明公开了一种基于MCL和光谱差异度量的高光谱影像波段选择方法,通过计算波段间的相关系数,构建波段间相关性的邻接矩阵,运用马尔可夫聚类自适应地将波段划分为多个聚簇,并基于聚类结果,设计目标类别监督下的波段差异性度量准则,选择出适于目标地物提取的波段集,最后利用监督分类算法,依据训练样本和测试样本确定最优波段数,实现目标地物的最高精度提取。其显著效果是:充分运用波段间邻近相关性和波段索引距离信息,并且考虑了噪声较大波段和坏道零值波段对聚类的影响,提高了波段聚簇划分的准确性和合理性,实现了选择最优波段和目标地物精准识别,具有解决实际问题的优势。
-
-
公开(公告)号:CN112884791B
公开(公告)日:2021-11-26
申请号:CN202110140509.6
申请日:2021-02-02
Applicant: 重庆市地理信息和遥感应用中心
Abstract: 本发明公开了一种构建大规模遥感影像语义分割模型训练样本集的方法,将已有的遥感影像矢量数据与多期遥感影像进行配准,并依据图斑密度分别通过滑窗算法自动切割提取初级样本集;对初级样本集中每一张图像进行特征提取,并采用聚类算法进行分类,剔除图像质量不佳的样本,获得中间样本集;将中间样本集分批次输入语义分割模型进行迭代优化训练,并在每次迭代优化完成后对样本进行预测,剔除中间样本集中的错误样本,获得目标样本集。其显著效果是:能够避免生成整幅影像且占用空间极大的掩膜,减少滑窗的滑动次数,提高样本的提取速度与数据质量;提高了正确样本在样本集中的纯度,大幅降低了制作大规模样本集的成本。
-
公开(公告)号:CN113159122A
公开(公告)日:2021-07-23
申请号:CN202110280016.2
申请日:2021-03-16
Applicant: 重庆市地理信息和遥感应用中心 , 中南大学
IPC: G06K9/62
Abstract: 本发明公开了基于社交媒体图像数据的城市风貌分析方法,方法包括:获取社交媒体图像数据;对数据集的样本进行分类和去除噪声;使用卷积神经网络进行风貌学习;对样本不平衡问题进行处理;进行迁移学习;对风貌特征进行聚类;计算城市间的风貌距离;分析城市间的风貌相似性及城市的细粒度风貌。本发明将城市风貌编码为一组向量;解决了社交媒体图像分布的不均衡问题;利用城市风貌向量定义了城市风貌距离,使用该距离能分析出不同城市如何表象出风貌相似和风貌相近的,能分析出风貌距离和地理距离的相关性;使用城市风貌向量为嵌入向量的聚类方法,能够更细致地发现城市细粒度风貌。
-
公开(公告)号:CN111008603A
公开(公告)日:2020-04-14
申请号:CN201911246128.5
申请日:2019-12-08
Applicant: 中南大学 , 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Inventor: 李朋龙 , 丁忆 , 连蓉 , 马泽忠 , 李晓龙 , 罗鼎 , 肖禾 , 段松江 , 王岚 , 王亚林 , 钱进 , 刘朝晖 , 王小攀 , 魏文杰 , 谭攀 , 曾远文 , 张灿 , 范文武 , 秦成 , 张斌
Abstract: 本发明公开了一种面向大尺度遥感图像的多类目标快速检测方法,包括以下步骤:将大比例尺遥感图像进行裁剪,并通过重新缩放和旋转来增强数据;利用具有串联线性整流函数模块和Inception模块的卷积特征提取器,将所得的图像数据作为输入并输出多个级别的特征;构建多尺度目标提议网络,并利用多尺度目标提议网络将卷积特征提取器输出的特征生成类似目标区域预测框;构建基于融合特征映射的精确目标检测网络,输入带有类似目标区域预测框的图像,利用精确目标检测网络实现精确的目标检测,输出检测结果。实现了具有大尺度变化的遥感图像中的多类目标自动检测,使得对遥感图像的多目标的实时检测成为可能。
-
公开(公告)号:CN110443816A
公开(公告)日:2019-11-12
申请号:CN201910729774.0
申请日:2019-08-08
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心) , 武汉大学
Inventor: 胡艳 , 李朋龙 , 连蓉 , 王亚林 , 张泽烈 , 徐永书 , 李怡静 , 胡翔云 , 丁忆 , 罗鼎 , 段松江 , 吴凤敏 , 王小攀 , 陈静 , 钱进 , 范文武 , 刘建 , 李晓龙 , 郑中 , 谭攀
Abstract: 本发明公开了一种基于道路交叉口检测的遥感影像上城市道路提取方法,包括步骤:建立道路交叉口模型,基于遥感影像提取初始道路线;对初始道路线进行求交运算提取初始道路交叉点,并构建初始道路网络;基于影像分割和交叉口轮廓形状分析法对初始道路交叉点进行检测与验证,获取交叉点的类型及其连通的道路方向;根据交叉点的类型选取正确的交叉点,结合其连通的道路方向,构建目标城市道路网络。其显著效果是:基于道路交叉口提取城市道路,为城市道路网提取提供了稳定可靠的提取结果,完整度、准确率更高,有效克服了现有技术中算法不具备普适性、对道路特征和地物情况要求较高等不足。
-
公开(公告)号:CN117315455A
公开(公告)日:2023-12-29
申请号:CN202310046948.X
申请日:2023-01-31
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明通过高分辨的遥感影像设计云信息表征指数、自适应阈值分割初步提取云体、几何特征过滤非云对象和提纯云体、设计形态学滤云算子进一步提纯精化,最后通过云体栅格转为矢量并统计云量实现检测,相比于机器学习和深度学习云检测方法对样本数据的依赖,本发明人工参与少、自动化程度高、检测结果具有显著的云团几何形态优势,仅利用云层的亮度和几何形态特征,实现对高分辨率遥感影像自动化精准云检测,检测过程简单,可为高分辨率影像的质量检查、无云影像筛选,以及云覆盖区域的影像补采、填补生成无云影像等生产工序提供支撑,具有较强的泛化性和实用性。
-
公开(公告)号:CN117036756A
公开(公告)日:2023-11-10
申请号:CN202310994138.7
申请日:2023-08-08
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V10/75 , G06V10/74 , G06V10/82 , G06N3/0455
Abstract: 本发明公开了一种基于变分自动编码器的遥感图像匹配方法及系统,包括:步骤S1:获取遥感影像图像上的待匹配图像块;步骤S2:利用变分自编码器提取所述待匹配图像块和对应遥感影像底图的特征,获得所述待匹配图像块和所述遥感影像图像的各兴趣点集;步骤S3:将各所述兴趣点集进行特征尺度和主导方向分配;步骤S4:使用归一化互相关匹配算法对所述步骤S3中特征尺度和主导方向分配后的兴趣点集进行匹配,得到匹配度矩阵得分,根据所述匹配度矩阵得分确定最佳匹配区域。本发明提高了遥感图像匹配的精度和工作效率。
-
公开(公告)号:CN115761486A
公开(公告)日:2023-03-07
申请号:CN202211420265.8
申请日:2022-11-15
Applicant: 重庆市地理信息和遥感应用中心
Abstract: 本发明提供一种基于多期稻田影像特征的水稻种植区判定方法和系统,其中,方法包括:获取水稻的耕作制度和物候信息,确定水稻收割后及种植初期和/或灌浆期的至少两个特定时期,获取多期初始遥感影像并进行预处理,得到第一期遥感影像、第二期遥感影像和/或第三期遥感影像;获取水田矢量数据,对第一期遥感影像进行空间约束,结合第一期遥感影像呈现的纹理和光谱特征,判定初始水稻种植区;根据第二期遥感影像和/或第三期遥感影像呈现的光谱特征,判定水稻干扰区;基于空间叠加技术,在初始水稻种植区中剔除水稻干扰区,获取目标水稻种植区。本发明实现了在复杂山地背景下对水稻种植区的精准判定,且能够得到便于识别和管理的水稻种植区范围。
-
公开(公告)号:CN113011427B
公开(公告)日:2022-06-21
申请号:CN202110285256.1
申请日:2021-03-17
Applicant: 中南大学 , 重庆市地理信息和遥感应用中心
Abstract: 本发明公开了基于自监督对比学习的遥感图像语义分割方法,包括以下步骤:构建语义分割网络模型(如Deeplab v3+);采用无标注数据对所述网络模型的编码器进行预训练;预训练完成后,在标注样本上对所述网络模型进行有监督语义分割训练;采用有监督语义分割训练完成的网络模型对遥感图像进行语义分割;在预训练的过程中,采用全局风格对比和局部匹配对比结合的方式进行对比学习。本发明将对比自监督学习应用于到了遥感语义分割数据集,提出了全局风格和局部匹配对比学习框架,形成了基于自监督对比学习的遥感图像语义分割方法,使得语义分割方法的适用面更广,分割效果更好。
-
-
-
-
-
-
-
-
-