-
公开(公告)号:CN117725688A
公开(公告)日:2024-03-19
申请号:CN202410179042.X
申请日:2024-02-18
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/20 , G06F111/06
Abstract: 本发明提供了一种多激波系低声爆高升阻比外形设计方法、系统及气动外形,具体包括:利用拉丁超立方采样法分别获得机身和机翼的设计变量,对样本点下的机身和机翼分别进行气动与声爆分析,建立对应的代理模型,调用预设优化算法进行气动和声爆的多目标设计,获得各自的设计变量,以及各自对应的气动与声爆响应,得到、输出机身及机翼外形,并对机身与机翼进行分离与耦合设计。本发明提供的方法具有设计效率高、迭代速度快的优点,能够形成具有优良气动特性与声爆特性的气动外形。
-
公开(公告)号:CN116227244A
公开(公告)日:2023-06-06
申请号:CN202310513465.6
申请日:2023-05-09
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F30/28 , G06F113/08 , G06F119/14
Abstract: 本发明公开了考虑马赫数变化和最佳减阻效果的僚机相对位置设计方法,涉及航空飞行器技术领域,首先生成单独长机飞行器的计算网格;再采用CFD方法计算得到单独长机飞行器飞行时在巡航状态下的流场数据;然后采用流场后处理软件计算得到单独长机流场中上洗角;再基于上洗角的前提下考虑马赫数变化,依次确定长机与僚机之间的流向间距、垂向间距和横向间距;本发明考虑编队飞行马赫数的变化,给出的流向间距符合实际飞行安全需求;通过本发明得到的僚机相对于长机的合适位置充分利用长机产生的上洗气流,确保僚机获得最佳减阻效果;该设计方法具有成本低、速度快、准确性高、僚机相对位置满足较好减阻需求且考虑了马赫数变化的优势。
-
公开(公告)号:CN115795696A
公开(公告)日:2023-03-14
申请号:CN202310047241.0
申请日:2023-01-31
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F18/213 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本申请公开了一种容冰翼型设计过程中冰形的生成方法、装置、设备及介质,涉及航空航天数值优化技术领域,包括:对初始翼型进行参数化表示,得到若干数量个翼型样本参数及其对应的翼型样本数据集;翼型样本参数为非容冰翼型的参数;确定与翼型样本数据集对应的冰形数据集,并对冰形数据集进行降维得到第一冰形系数,确定出翼型样本参数与第一冰形系数的映射关系;确定出容冰翼型样本参数,并根据映射关系预测得到与容冰翼型样本参数对应的冰形。可见,本申请首先建立翼型与冰形之间的映射关系,所述翼型为不考虑容冰的翼型,然后基于所述映射关系实现由容冰翼型到对应冰形的快速预测,如此一来,达到缩短容冰翼型设计周期、提高设计效率的目的。
-
公开(公告)号:CN115571323A
公开(公告)日:2023-01-06
申请号:CN202211567963.0
申请日:2022-12-08
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明提供一种亚声速扁平融合体布局飞行器,涉及航空飞行器设计技术领域,内翼体的尾部轮廓边缘和两个外翼体轮廓边缘采用边缘平行法则设计布局,具有隐身特性;内翼体的头部边缘形成内翼体后略角,外翼体的前部边缘形成外翼段后掠角,采用双后掠布局适应较高速度飞行和低速飞行;内翼体采用后缘对称翼型或轻微后卸载翼型,外翼体采用前缘加载和后缘略大后卸载相组合的翼型,实现巡航设计点的力矩自配平;内翼体设置背负式进排气系统,保证隐身特性;进排气系统的进气道和尾喷管均采用S弯内流型面设计;尾喷管出口进行保形设计,可实现多种进排气系统的融合。采用多种特征相互组合的方式进行设计,兼顾隐身特性与气动特性,具有更好的综合特性。
-
公开(公告)号:CN113609596A
公开(公告)日:2021-11-05
申请号:CN202111147006.8
申请日:2021-09-29
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种基于神经网络的飞行器气动特性预测方法,涉及飞行器气动设计领域,包括:采集预设飞行器在不同来流参数和外形参数下的气动特性参数获得第一训练集;将第一训练集划分为M个第一子训练集;构建M个第一飞行器气动特性预测模型;基于M个所述第一子训练集分别训练对应的M个第一飞行器气动特性预测模型,获得M个第二飞行器气动特性预测模型;基于待预测飞行器的来流参数和外形参数获得M个输入数据;将M个输入数据分别输入到对应的第二飞行器气动特性预测模型中获得待预测飞行器的气动特性参数预测结果;通过本方法能够快速且准确的对飞行器气动特性进行预测,降低了计算量和计算成本,提高了效率。
-
公开(公告)号:CN110733641A
公开(公告)日:2020-01-31
申请号:CN201911055723.0
申请日:2019-10-31
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种采用环量控制的无人飞行器,涉及无人机领域,包括机身和安装机身中心的螺旋桨,所述机身上还安装有至少四个向下喷气的喷气装置,多个喷气装置沿机身四周周向均匀间隔排布。本发明通过螺旋桨与喷气装置配合,使飞行器的机动和控制能力大大提高,使飞行器的负重重量大大提高,且使飞行器的响应更快,操作更加灵活。
-
公开(公告)号:CN108197368A
公开(公告)日:2018-06-22
申请号:CN201711445317.6
申请日:2017-12-27
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F17/50
Abstract: 本发明公开了一种适用于飞行器复杂气动外形的几何约束及权函数简捷计算方法,采用全新的复杂气动外形优化设计几何约束的评估方法和基于灵敏度多点优化权函数选择的方法,准确方便地计算出任意复杂外形的厚度、容积等几何约束,兼容离散表面多块对接网格、离散表面非结构网格等;权函数选择能够充分利用已有权函数数据的有效信息,具有权系数选择指导性,从而充分挖掘基于灵敏度优化技术的设计潜力。
-
公开(公告)号:CN118419258A
公开(公告)日:2024-08-02
申请号:CN202410882211.6
申请日:2024-07-03
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本申请涉及超声速飞机领域,具体而言,涉及一种超声速低声爆升力体布局飞行器。具体的,本申请的超声速低声爆升力体布局飞行器包括:升力体机身,尾翼,发动机短舱与环形翼;升力体机身为扁平对称升力体结构,包括尖前缘与大后掠,其中,后掠由对称分布的左后掠部与右后掠部组成;尾翼由左尾翼与右尾翼组成,其中,左右尾翼分别对称设置在左右后掠部的尾端;在左右后掠部的上方设置左右发动机短舱;环形翼由左环形翼部与右环形翼部组成,其中,左右环形翼部分别对称设置在左右后掠部的上方;此外,环形翼还包括方向舵与襟副翼。采用本申请的技术方案可以解决超声速飞行时的声爆问题,以及低速起降与超声速巡航的飞行状态控制问题。
-
公开(公告)号:CN116738576A
公开(公告)日:2023-09-12
申请号:CN202310824318.0
申请日:2023-07-06
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/20 , G06F111/10 , G06F113/28 , G06F119/14 , G06F113/08
Abstract: 本发明公开了一种旋翼结冰冰形预测方法、装置、设备及存储介质,应用于冰形预测领域,该方法考虑了离心力和溢流速度差异的影响,通过引入溢流水流动时间步和离心加速度来更新控制体的流出水质量流量和流入水质量流量,并迭代计算活动水质量流量直至收敛,从而确定最终的目标冻结水冻结速率以预测旋翼结冰冰形。避免了现有技术中在迭代计算活动水质量流量时,使每一次迭代每个网格的流出水完全流出到相邻的网格,同时该网格也接收来自上游的溢流水,忽视了不同网格尺寸差异和溢流速度的差异且未考虑离心力对水膜的作用而导致旋翼结冰冰形预测不精确的问题。
-
公开(公告)号:CN116227244B
公开(公告)日:2023-07-11
申请号:CN202310513465.6
申请日:2023-05-09
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F30/28 , G06F113/08 , G06F119/14
Abstract: 本发明公开了考虑马赫数变化和最佳减阻效果的僚机相对位置设计方法,涉及航空飞行器技术领域,首先生成单独长机飞行器的计算网格;再采用CFD方法计算得到单独长机飞行器飞行时在巡航状态下的流场数据;然后采用流场后处理软件计算得到单独长机流场中上洗角;再基于上洗角的前提下考虑马赫数变化,依次确定长机与僚机之间的流向间距、垂向间距和横向间距;本发明考虑编队飞行马赫数的变化,给出的流向间距符合实际飞行安全需求;通过本发明得到的僚机相对于长机的合适位置充分利用长机产生的上洗气流,确保僚机获得最佳减阻效果;该设计方法具有成本低、速度快、准确性高、僚机相对位置满足较好减阻需求且考虑了马赫数变化的优势。
-
-
-
-
-
-
-
-
-