-
公开(公告)号:CN103076162B
公开(公告)日:2015-12-09
申请号:CN201310042037.6
申请日:2013-02-04
Applicant: 中国科学院光电技术研究所
IPC: G01M11/02
Abstract: 本发明公开了一种亚波长光栅周期的测量器件,由标准光栅和金属介质多层膜组成,金属-介质多层膜由多层介质层和多层金属层为相间隔放置;介质层的上层位于标准光栅的下方,金属层的底层位于待测光栅上方,将电场方向与标准光栅方向垂直的线偏振入射光照射到标准光栅上,标准光栅产生多级携带高空间频率的衍射波,并通过金属介质多层膜滤波;滤过透射波与待测光栅差频形成能观测的长周期干涉条纹;最后观察测量干涉条纹并确定待测光栅周期。
-
公开(公告)号:CN103984211A
公开(公告)日:2014-08-13
申请号:CN201410192957.0
申请日:2014-05-08
Applicant: 中国科学院光电技术研究所
IPC: G03F7/20
Abstract: 本发明提供一种基于双光束聚合引发以及抑制的高分辨成像光刻方法,主要步骤为:(1)选择或配置一种光刻胶,其含有对不同波长激光响应的聚合引发剂和聚合抑制剂;(2)选择对应的聚合引发激光器和聚合抑制激光器;(3)制作两个掩模版,其掩模图形形状和尺寸均相同或相似;(4)掩模版1和掩模版2在聚合抑制和聚合引发激光的作用下,通过二向色镜和透镜合束成像在同一个平面内,所成的像在空间上部分交叠;(5)将含有聚合引发剂,聚合抑制剂的光刻胶样品放置在成像平面上进行曝光及显影,得到高分辨的成像光刻图形。本发明具有光刻分辨率高,加工效率高等优点,在超越衍射极限的高效率,低成本纳米加工技术领域具有很大的应用前景。
-
公开(公告)号:CN103926707B
公开(公告)日:2016-01-20
申请号:CN201410165583.3
申请日:2014-04-23
Applicant: 中国科学院光电技术研究所
Abstract: 本发明公开了一种波导共振耦合表面等离子体光场的激发和调控方法,采用器件主要由透明基底、纳米结构层和波导共振多层膜构成。对于确定波长的平面波照射透明基底,透明基底上的纳米结构层将照明平面波衍射为各级次平面波。利用波导共振多层膜的共振耦合特性,对于各级次平面波透射波导共振多层膜后将产生特定单一级次的表面等离子体光场,波导共振多层膜材料的虚部吸收小、激发产生的表面等离子体光场强度高,最终可以在波导共振多层膜的上表面形成纵向5nm~50nm范围内倏逝的表面等离子体光场。本发明的方法对波导共振多层膜的厚度误差、粗糙度要求低,有望用于超分辨显微的结构照明、表面等离子体干涉光刻、表层显微、表面等离子体生物传感等领域。
-
公开(公告)号:CN103454866B
公开(公告)日:2015-12-02
申请号:CN201310438387.4
申请日:2013-09-24
Applicant: 中国科学院光电技术研究所
IPC: G03F7/20
Abstract: 提供了基于表面等离子体波照明的光刻成像设备及光刻成像方法。一示例光刻成像设备可以包括:表面等离子体SP波照明场产生装置,被配置为接收以一定方向入射的远场照明光束,以产生特定传输波长的SP波照明场。SP波照明场可以通过掩模激发待成像的光场。远场照明光束的入射角度可以被设置为能够产生特定传输波长的SP波照明场,实现SP波通过掩模层的+1级或-1级衍射光与0级衍射光发生干涉。
-
公开(公告)号:CN102879360B
公开(公告)日:2015-04-22
申请号:CN201210325524.9
申请日:2012-09-05
Applicant: 中国科学院光电技术研究所
Abstract: 本发明公开了一种超衍射定向传输材料结构制备后的测试分析方法,在透明基底上通过纳米加工方法得到纳米狭缝或孔结构掩模;在已平坦化的纳米狭缝或孔结构掩模上沉积金属介质交替多层膜结构材料;通过刻蚀或研磨的方法实现表层薄膜材料的粗糙化,完成结构制备;然后通过光源照明狭缝或小孔,激发表面等离子体倏逝波光场,并交替耦合到多层金属介质薄膜材料中,表面等离子体光场在金属介质膜层材料最外层形成特定分布,并被粗糙化表面散射到远场,通过物镜和CCD观测记录;最后计算得出超衍射材料的定向传输角度θ。本发明将高频倏逝波能量转化到远场进行探测和分析,可满足超衍射材料光学特性在远场范围的量化分析及表征需求。
-
公开(公告)号:CN102866594B
公开(公告)日:2014-09-10
申请号:CN201210365973.6
申请日:2012-09-27
Applicant: 中国科学院光电技术研究所
Abstract: 本发明提供一种光栅辅助纳米成像的光刻方法,纳米物体或纳米图形掩模位于物方区域,在纳米物体或纳米图形掩模前放置一物方光栅,该光栅作用在于将高频倏逝波转化为传输波;在物方光栅外的远场区域放置一光学成像镜头组,利用该镜头组实现对光场分布投影成像。在光学成像镜头组另一侧放置一像方光栅,将传输波转化为高频倏逝波,最后在像方光栅下的成像区域成像。本发明利用两个光栅对传输波和倏逝波进行转化,同时利用光学成像镜头组实现对光场分布投影成像,得到了亚波长尺度的成像,突破了常规超衍射材料近场限制,物像空间位置关系可处于远场范围,且视场不受限于超衍射材料的损耗、加工困难等因素,拓展到与传统成像光学系统视场相当的尺寸。
-
公开(公告)号:CN103968770A
公开(公告)日:2014-08-06
申请号:CN201410192906.8
申请日:2014-05-08
Applicant: 中国科学院光电技术研究所
IPC: G01B11/14
Abstract: 本发明提供一种基于表面等离子体共振的高精度纳米间隙检测结构及方法,属于纳米光学技术领域,可解决现有技术测量精度低,无法动态测量等问题。本发明中光源输出光经过准直镜、宽带偏振器入射到分束器;经过分束镜的透射光与纳米间隙检测结构及基底相互作用后,反射光回至分束器;经分束器反射并由透镜会聚后入射至光谱探测器,探测器将探测得到的数据传到计算机,经计算机处理得到间隙值,实现纳米间隙的检测。本发明采用光谱探测的方法可以实现纳米量级间隙的高精度动态检测,为纳米加工、纳米测量领域提供一种全新的测试技术;并有望在包括近场光学,近场物理在内的多个研究领域发挥重要作用。
-
-
公开(公告)号:CN102862950B
公开(公告)日:2015-04-22
申请号:CN201210365757.1
申请日:2012-09-27
Applicant: 中国科学院光电技术研究所
Abstract: 本发明提供一种纳米缝隙金属聚焦透镜的制备方法,首先确定入射波长,选取合适的透光基底材料,基底上再蒸镀一层金属膜,让入射光垂直于金属膜表面入射;利用纳米加工技术在金属膜上加工等宽度的狭缝或者环形缝阵列;对于预定焦点位置的光聚焦,计算光在焦点位置聚焦时光波在不同位置排布的狭缝或者环形缝的位相延迟分布,通过聚焦离子束引导沉积特定厚度的介质满足光波在不同位置排布狭缝或者环形缝的位相延迟要求,使金属聚焦透镜实现对入射光在预定焦点位置的聚焦。本发明根据预定的焦点位置来改变金属聚焦透镜的狭缝或者环形缝内介质厚度沉积以实现近场或者远场光聚焦,同时其透镜结构简单,可很方便的用于光路系统集成,具有广阔的应用前景。
-
公开(公告)号:CN102879916B
公开(公告)日:2014-11-26
申请号:CN201210324705.X
申请日:2012-09-05
Applicant: 中国科学院光电技术研究所
Abstract: 本发明提供一种位相型纳米物体表面等离子体超分辨成像方法,对于确定的工作波长,选择透明的载玻片,载玻片上加工典型的金属-介质-金属结构,即双层金属膜包裹生物样本层、要求金属膜和生物样本材料的介电常数匹配,利用双层金属薄膜包裹生物样本层,对于线偏振的光照射,该表面等离子体超分辨成像器件能够将生物样本层中位相型物体与生物样本层的微小折射率差异转化为近场光强强度分布,通过近场探针或者光记录方式记录近场的光强强度分布从而实现位相型纳米物体的超衍射分辨。本发明用于生物样本中位相型纳米物体的超衍射分辨,采用双层金属薄膜包裹生物样本层的设计,拓展传统相衬相位技术分辨力衍射受限的局限。
-
-
-
-
-
-
-
-
-