-
公开(公告)号:CN119956065A
公开(公告)日:2025-05-09
申请号:CN202411968866.1
申请日:2024-12-30
Applicant: 中国兵器装备集团西南技术工程研究所
IPC: C21D9/30 , C21D1/18 , C21D10/00 , C21D1/10 , C23C8/56 , C21D6/00 , C22C38/02 , C22C38/04 , C22C38/44 , C23C24/10 , C22C19/07
Abstract: 本发明涉及曲轴强化技术领域,具体公开了一种微塑形变形的高强度曲轴的加工工艺,加工工艺分为四步,首先将曲轴进行淬火处理,淬火完成后,使用微冲击强化曲轴根部,微冲击强化完成后进行碳氮共渗,最后在表面激光熔覆一层钴合金耐磨层,加工后的曲轴具有圆根部位硬度高、粗糙度好、微观组织细小,冲击装置结构简单、能耗低的优点。可操作强,成本低,适用于大规模生产加工。
-
公开(公告)号:CN115055653B
公开(公告)日:2023-09-08
申请号:CN202210753929.6
申请日:2022-06-29
Applicant: 中国兵器装备集团西南技术工程研究所 , 中国人民解放军陆军装备部驻重庆地区军事代表局驻重庆地区第六军事代表室
Abstract: 本发明提供了一种大尺寸稀土镁合金铸锭的制备方法,步骤包括:先将稀土合金溶体输入到凝固模具中,然后将凝固模具置于真空罐内抽真空处理,再向凝固模具内充入惰性气体;将充好惰性气体的凝固模具移至冷却装置的升降台上,将冷却装置的四个加热区温度控制在200℃~700℃范围内;开启冷却装置的循环水,同时监测铸锭不同位置的温度,当铸锭温度小于400℃时,开启冷却装置的升降机构,使凝固模具缓慢浸入冷却水中,直到铸锭凝固完成。本发明以极其简单而巧妙的方案解决了现有大尺寸稀土镁合金铸锭制备工艺工序繁琐、制备难度高、成型性能差的问题,不仅能够简化工序步骤、降低制备成本和制备难度,大幅提高了其成型性能。
-
公开(公告)号:CN115055653A
公开(公告)日:2022-09-16
申请号:CN202210753929.6
申请日:2022-06-29
Applicant: 中国兵器装备集团西南技术工程研究所 , 中国人民解放军陆军装备部驻重庆地区军事代表局驻重庆地区第六军事代表室
Abstract: 本发明提供了一种大尺寸稀土镁合金铸锭的制备方法,步骤包括:先将稀土合金溶体输入到凝固模具中,然后将凝固模具置于真空罐内抽真空处理,再向凝固模具内充入惰性气体;将充好惰性气体的凝固模具移至冷却装置的升降台上,将冷却装置的四个加热区温度控制在200℃~700℃范围内;开启冷却装置的循环水,同时监测铸锭不同位置的温度,当铸锭温度小于400℃时,开启冷却装置的升降机构,使凝固模具缓慢浸入冷却水中,直到铸锭凝固完成。本发明以极其简单而巧妙的方案解决了现有大尺寸稀土镁合金铸锭制备工艺工序繁琐、制备难度高、成型性能差的问题,不仅能够简化工序步骤、降低制备成本和制备难度,大幅提高了其成型性能。
-
公开(公告)号:CN116728866A
公开(公告)日:2023-09-12
申请号:CN202310705358.3
申请日:2023-06-14
Applicant: 中国兵器装备集团西南技术工程研究所
IPC: B29D99/00
Abstract: 本发明提供了一种利用连续纤维穿插增强内齿形构件的成形装置,电机输出端连接拨块,拨块内侧设有纤维纱辊,壳体侧板上设有矩形通道,每个纤维纱辊的连杆插入矩形通道中且被横向限位,当电机驱动拨块转动时拨块拨动纤维纱辊顺着矩形通道移动;在壳体内设有纤维定形板,纤维预定性板上表面设有与内齿形构件的齿部相适配的定形槽,在纤维预定性板上方设有粘接料喷洒机构、纤维导向辊、纤维下压辊、固化机构、压实辊体、切割机构、卷型机构和出料盘。本发明不仅可灵活、自动实现复合材料内齿构件的纤维穿插组合,而且能够实现多种穿插方式的组合,能够获得组织致密、孔隙率小、内部纤维连续的内齿形构件,从根本上避免了内齿形构件分层失效的问题。
-
公开(公告)号:CN115575402B
公开(公告)日:2023-04-11
申请号:CN202211267410.3
申请日:2022-10-17
Applicant: 中国兵器装备集团西南技术工程研究所
Abstract: 本发明提供一种收口筒形零件内壁缺陷智能识别、计算、判断方法,采用智能识别装置,智能识别装置包括筒形件运动机构(10)、图像采集机构(20)及识别判断系统(30);筒形件运动机构(10)包括工作台(11)、导轨(12)、零件架(13)、伸缩箱(14)及连接杆(15),图像采集机构(20)包括摄像头导轨(21)、摄像头驱动机构(22)及摄像头组架(23),识别判断系统(30)包括控制柜(31)与显示器(32);该方法包括内壁图像采集,拍摄图像处理,斜肩部分处理,降噪处理,图像识别、计算、判断及缺陷判断。该方法适用于收口筒形零件内壁缺陷的无损探伤,能够自动识别、计算及评价收口筒形零件内壁的缺陷,检测精准度高、效率高。
-
公开(公告)号:CN119470469A
公开(公告)日:2025-02-18
申请号:CN202411701764.3
申请日:2024-11-26
Applicant: 中国兵器装备集团西南技术工程研究所
IPC: G01N21/95 , G01N27/904
Abstract: 本发明提供一种金属构件表面缺陷联合检测方法,涉及金属检测领域,包括:步骤S1、工件放置;步骤S2、涡流检测;步骤S3、工件转移;步骤S4、视觉检测;步骤S5、工件判断。该方法综合涡流与机械视觉、对薄壁管形或筒形结构金属构件的表面缺陷进行分析与判断,有效解决单一机器视觉检测方法无法准确、快速检测该类金属构件的表面缺陷,易出现检测盲区,以及单一涡流探伤对该类金属构件表面缺陷检测不灵敏、定量不准确、易受信号干扰等问题,实现高效、准确、全面的金属构件表面探伤。
-
公开(公告)号:CN119932269A
公开(公告)日:2025-05-06
申请号:CN202411968862.3
申请日:2024-12-30
Applicant: 中国兵器装备集团西南技术工程研究所
IPC: C21D1/10 , C21D1/18 , C21D1/60 , C23C26/00 , C23C24/10 , C21D9/30 , C21D6/00 , C22C38/02 , C22C38/04 , C22C38/46 , C22C38/42 , C22C38/44 , C22C38/50
Abstract: 本发明公开了一种局部淬硬复杂构件的生产工艺,涉及热处理技术领域,具体包括以下步骤:S1:将基础构件的待加热部分放置于感应加热圈中,进行感应加热;S2:感应加热结束后,对加热部分喷淋淬火液,冷却至室温后,取出,低温回火,得到淬火构件;S3:将淬火构件需淬硬部分打磨,脱脂,烘干,将表面处理液涂覆在其表面,固化,在氮气氛围下感应熔覆,得到局部淬硬构件;根据测试,本发明提供的工艺局部淬硬后的复杂构件硬度较高,且内部无裂纹。
-
公开(公告)号:CN116287638A
公开(公告)日:2023-06-23
申请号:CN202310285912.7
申请日:2023-03-22
Applicant: 中国兵器装备集团西南技术工程研究所
Abstract: 本发明提供了一种大尺寸板型铝构件防变形装置及变形控制方法,包括底架和压紧部,底架上设置有支撑部,所有支撑部顶面重合于平面一且用于贴靠工件的底面;在底架的边框上设置有多个连接螺栓,连接螺栓上部配合压紧部的螺孔,在底架的第一边框上设置有挡部,挡部内侧壁与工件相接触,在压紧部上设置有多个安装孔,每个安装孔内配合有可上下调节的压紧杆,压紧杆下端用于抵紧板型工件的变形区域;其方法步骤包括将板型铝构件放置在支撑部顶面。将压紧部放置在板型铝构件顶部的增厚部位,并拧紧连接螺栓,按照变形控制量拧好压紧杆。本发明能够有效抑制大尺寸板型铝构件热处理变形和淬火变形,避免构件因变形和开裂而导致的报废,提高产品成品率。
-
公开(公告)号:CN115575402A
公开(公告)日:2023-01-06
申请号:CN202211267410.3
申请日:2022-10-17
Applicant: 中国兵器装备集团西南技术工程研究所
Abstract: 本发明提供一种收口筒形零件内壁缺陷智能识别、计算、判断方法,采用智能识别装置,智能识别装置包括筒形件运动机构(10)、图像采集机构(20)及识别判断系统(30);筒形件运动机构(10)包括工作台(11)、导轨(12)、零件架(13)、伸缩箱(14)及连接杆(15),图像采集机构(20)包括摄像头导轨(21)、摄像头驱动机构(22)及摄像头组架(23),识别判断系统(30)包括控制柜(31)与显示器(32);该方法包括内壁图像采集,拍摄图像处理,斜肩部分处理,降噪处理,图像识别、计算、判断及缺陷判断。该方法适用于收口筒形零件内壁缺陷的无损探伤,能够自动识别、计算及评价收口筒形零件内壁的缺陷,检测精准度高、效率高。
-
公开(公告)号:CN114836664B
公开(公告)日:2023-04-14
申请号:CN202210432441.3
申请日:2022-04-23
Applicant: 中国兵器装备集团西南技术工程研究所
Abstract: 本发明提供了一种高强高塑耐热镁合金构件及其制备方法,它是由以下组分组成,Gd:5.0~9.0%,Y:2.0~6.0%,Zn:0.1~0.5%,Zr:0.3~1.0%,余量为Mg和不可避免的杂质,且其组分组成中稀土元素Gd和Y的质量百分比总和为8~12%;其制备方法的步骤包括合金熔炼、均匀化处理、强塑变、热成形、温变形:将所得成形件在200℃~250℃下加热保温2h后放入200℃预热的模具中,变形量控制为3~10%、热处理。制得的镁合金构件晶粒细小,其在室温下的抗拉强度≥428MPa,断后伸长率≥12%,在200℃下的抗拉强度≥358MPa,断后伸长率≥13%,可广泛替代2A12等中强铝合金,可进一步扩大镁合金的应用范围。
-
-
-
-
-
-
-
-
-