-
公开(公告)号:CN119549682A
公开(公告)日:2025-03-04
申请号:CN202411812791.8
申请日:2024-12-10
Applicant: 中国中信有限公司 , 中信戴卡股份有限公司
Abstract: 本发明公开了一种基于3D打印透气钢材料的铝合金低压铸造模具及制作工艺,其包括:上模、下模的内部均设有冷却管,上模的上表面活动连接有上模顶杆,上模的内部设有分流锥,分流锥的内部固定连接有热电偶五,上模的内部固定连接有热电偶二,上模的内部固定连接有热电偶三,上模的内部固定连接有热电偶四;上模与下模可拆卸连接,下模的上表面活动连接有垫板,下模的内部设有浇口套,下模的内部设有浇口杯。该模具具有优异的透气性和复杂形状的加工能力。透气钢材料的微孔结构能够有效排除模具内部的气体,防止铸件产生气孔和其他缺陷。本发明能够制造出具有复杂几何形状和高精度的模具,显著提高模具的设计自由度和铸件质量。
-
公开(公告)号:CN119216569A
公开(公告)日:2024-12-31
申请号:CN202411345882.5
申请日:2024-09-25
Applicant: 中国中信有限公司 , 中信戴卡股份有限公司
Abstract: 本发明提供了一种铸造系统温度智能控制方法,包括:获取铸件模具特征区域,基于铸件结构特点在模具特征区域设置热电偶;依据热电偶测温结果与铸件质量检测结果建立随机森林模型并进行递归特征消除,判别各热电偶测温数据与铸件质量相关性,从而优化热电偶数量,对热电偶进行筛选;根据热电偶测温点温度数据、冷却工艺参数和对应铸件质量进行分析,通过梯度提升决策树模型构建冷却工艺参数、各模具热电偶起始温度与铸件质量的关系,基于关系对铸造系统温度进行控制。通过设置热电偶,并基于随机森林模型和梯度提升决策树模型,提高温度控制准确性以及及时对温度进行调整,达到优化铸造工艺、减少缺陷并确保铝合金轮毂的高品质制造的目的。
-
公开(公告)号:CN118898422A
公开(公告)日:2024-11-05
申请号:CN202411367513.6
申请日:2024-09-29
Applicant: 中信戴卡股份有限公司 , 中国中信有限公司
IPC: G06Q10/0639 , G06N20/00
Abstract: 一种基于模具温度的DTW‑GaussianNB铸件质量预测方法,属于铸件制造技术领域,包括:采集铸件过程模具关键位置温度,并获取内部缺陷质量数据;良品铸件对应的过程模具温度定义为第一模具温度,将待质量预测的铸件过程模具温度定义为第二模具温度;利用Z‑Score归一化方法对各测温点的温度归一化;以DTW算法计算归一化后的温度差异值;将不具/具备铸件内部缺陷的铸件定义为0和1编码作为输出,将归一化后模具温度差异值作为输入,建立并训练GaussianNB模型;将训练集数据代入模型训练,以测试集数据进行模型准确率评价。本发明通过建立过程模具温度与铸件质量之间的模型,可高效快速预测铸件质量,且较传统X射线检测更具同步性,提高铸造过程中工艺参数调整的及时性。
-
公开(公告)号:CN116955679A
公开(公告)日:2023-10-27
申请号:CN202311047643.7
申请日:2023-08-19
Applicant: 中信戴卡股份有限公司 , 中国中信有限公司 , 燕山大学
IPC: G06F16/535 , G06V10/40 , G06V10/74 , G06T7/60
Abstract: 一种车轮3D造型相似检索方法,包括步骤S1和S2。S1包括车轮3D造型特征提取:构建场景并依次获取车轮3D造型的存储路径;创建模型节点、矩阵变换节点,预处理车轮3D造型并将其添加到上一步创建的场景中;计算车轮3D造型包围盒大小;进行造型归一化;初始化参数,构建画布;利用动态步长径向步进算法和线段求交器进行车轮3D造型扫描,利用包围盒数据进行车轮3D造型形状信息计算并储存;提取所有车轮3D造型特征图像。S2包括相似度计算:读取特征图像并归一化;截取轮辐对应部分;灰度化并二值化轮辐特征图像,求解二值图的均方差及相似度并储存;将待匹配与候选车轮3D造型按照相似度值排序并输出,由此实现快速计算与检索。
-
公开(公告)号:CN118378358A
公开(公告)日:2024-07-23
申请号:CN202410545162.7
申请日:2024-04-30
Applicant: 中信戴卡股份有限公司 , 中国中信有限公司
IPC: G06F30/15 , G06F30/20 , G06F111/04
Abstract: 一种轮辋典型特征参数的识别方法和装置,该方法包括步骤:根据轮毂三维实体模型,识别轮辋的典型特征线获得识别后典型特征线,并将每条识别后典型特征线进行标准化命名;将识别后典型特征线投影到草图中获得投影后曲线,使投影后曲线与投影前所对应的识别后典型特征线的命名一致;提取轮辋典型特征参数,包括:获取投影后曲线自身几何特性参数,以及根据投影后曲线间几何关系创建尺寸约束,依据尺寸约束提取投影后曲线间的特征参数。由此,可基于CAD软件,实现无参轮毂轮辋参数的自动识别,为轮毂工程图自动生成时候的尺寸自动标注做好准备。
-
公开(公告)号:CN118064723A
公开(公告)日:2024-05-24
申请号:CN202311392277.9
申请日:2023-10-25
Applicant: 中信戴卡股份有限公司 , 中国中信有限公司
Abstract: 本发明提供了一种回收铝熔体除气净化方法。具体而言,在此提供熔体除杂装置及熔体除杂方法。所述熔体除杂装置包括:壳体,其内部具有容置腔,所述容置腔用于容置熔体;转杆,与所述壳体可转动连接,且其一端伸入至所述容置腔中;至少两个转盘,均位于所述容置腔中,均与所述转杆伸入所述容置腔中的一端固定连接,且均以所述转杆的纵长方向为旋转轴而转动;其中,所述转盘设有气孔,所述气孔用于向所述熔体中排气,以去除所述熔体中的杂气和夹渣。所述熔体除杂方法采用上述的除杂装置。本发明提供的熔体除杂装置及熔体除杂方法提升了对于熔体的除杂净化效果。
-
公开(公告)号:CN118898422B
公开(公告)日:2024-12-27
申请号:CN202411367513.6
申请日:2024-09-29
Applicant: 中信戴卡股份有限公司 , 中国中信有限公司
IPC: G06Q10/0639 , G06N20/00
Abstract: 一种基于模具温度的DTW‑GaussianNB铸件质量预测方法,属于铸件制造技术领域,包括:采集铸件过程模具关键位置温度,并获取内部缺陷质量数据;良品铸件对应的过程模具温度定义为第一模具温度,将待质量预测的铸件过程模具温度定义为第二模具温度;利用Z‑Score归一化方法对各测温点的温度归一化;以DTW算法计算归一化后的温度差异值;将不具/具备铸件内部缺陷的铸件定义为0和1编码作为输出,将归一化后模具温度差异值作为输入,建立并训练GaussianNB模型;将训练集数据代入模型训练,以测试集数据进行模型准确率评价。本发明通过建立过程模具温度与铸件质量之间的模型,可高效快速预测铸件质量,且较传统X射线检测更具同步性,提高铸造过程中工艺参数调整的及时性。
-
公开(公告)号:CN119457003A
公开(公告)日:2025-02-18
申请号:CN202411574764.1
申请日:2024-11-06
Applicant: 中国中信有限公司 , 中信戴卡股份有限公司
Abstract: 一种铝合金车轮毂低压铸造冷却系统冷却效果稳定性评估方法,涉及汽车轮毂低压铸造技术领域。包括:选取模具对象;布置热电偶,采集温度数据;改变热电偶测温点处初始温度,并进一步实时温度数据采集;提取特征温度数据,进行初始温度‑特征温度值的线性回归;进行温度数据波动分析,离散点偏离拟合曲线的最大值和最小值指标定量化衡量冷却系统冷却效果稳定性。本发明不仅可直观反应冷却系统冷却效果的稳定性,克服在无法实现模具初始温度一致条件下测试的难题,而且通过分析初始模具温度与特征温度值之间的关系,且选取开模前温度曲线上的温度值作为特征温度值,避免曲线分析的复杂性,值得业界推广使用。
-
公开(公告)号:CN119187516A
公开(公告)日:2024-12-27
申请号:CN202411574766.0
申请日:2024-11-06
Applicant: 中国中信有限公司 , 中信戴卡股份有限公司
IPC: B22D18/04
Abstract: 一种铝合金车轮毂低压铸造多工艺参数优化方法,涉及汽车轮毂低压铸造技术领域。所述铝合金车轮毂低压铸造多工艺参数优化方法,包括:建立铝合金车轮毂三维模型;设置初始生产工艺参数;进行低压铸造过程数值模拟;分析模具关键点温度分布;根据温度分布,调整生产工艺参数;重复执行上述步骤,进一步优化生产工艺参数,获得最优工艺参数组合;实际生产数据采集分析与模型构建;使用动态多目标粒子群进行工艺参数优化。本发明不仅可以实现设备控制工艺参数的优化与实时推荐,确保正在生产的铸件无铸造缺陷,提高铸件质量,而且实现了生产设备工艺参数智能优化与推荐,有效降低实验试制成本,缩短生产周期,加速提升生产效率,值得业界推广使用。
-
公开(公告)号:CN119588913A
公开(公告)日:2025-03-11
申请号:CN202411639364.4
申请日:2024-11-18
Applicant: 华中科技大学 , 中信戴卡股份有限公司
Abstract: 本发明属于但不限于低压铸造工艺技术领域,公开了一种铸造系统温度智能控制系统及方法,集成传感模块根据铸件模具特征区域分布设置,用于实时监测模具内不同位置的温度变化;数据采集与处理模块接收来自集成传感模块的数据,并进行预处理和存储;中央控制模块接收数据采集与处理模块提供的数据,并根据预设的铸造工艺参数和实时数据,动态调整铸造设备和温度智能控制系统执行模块;执行模块包括加热装置与冷却装置,根据中央控制系统的指令,调整加热通道的工艺参数与冷却通道的工艺参数,智能调控模具温度。本发明能够提高温度控制准确性以及及时对温度进行调整,达到优化铸造工艺、减少缺陷并确保铝合金轮毂的高品质制造的目的。
-
-
-
-
-
-
-
-
-