-
公开(公告)号:CN118817307A
公开(公告)日:2024-10-22
申请号:CN202410711752.2
申请日:2024-06-04
Applicant: 苏州大学
IPC: G01M13/04 , G01M13/045 , G06F30/17 , G06F119/14
Abstract: 本发明涉及机械设备健康状态评估及故障诊断技术领域,公开一种滚动轴承多点故障动力学建模和振动响应分析方法、系统。本发明以滚动轴承为研究对象,在构建轴承健康状态的动力学模型的基础性下,通过半正弦函数描述滚动体经过局部故障时的时变位移激励从而建立具有多点局部故障的轴承动力学模型,可以准确地模拟滚动轴承的振动机理,适用于轴承在不同故障类型和故障尺寸下的振动响应,为轴承振动响应分析提供理论基础,提高对滚动轴承故障分析的准确性,为数据驱动的滚动轴承智能故障诊断提供多点故障数据样本。
-
公开(公告)号:CN118260631A
公开(公告)日:2024-06-28
申请号:CN202410350184.8
申请日:2024-03-26
Applicant: 苏州大学
IPC: G06F18/24 , G01M13/045 , G06F18/241 , G06F18/2415 , G06F18/10 , G06F18/2131 , G06F18/25 , G06N3/0464 , G06N3/096
Abstract: 本发明提供一种故障轴承中故障类型监测方法和系统,涉及轴承故障诊断技术领域,该方法包括采集各种故障类型的轴承振动信号,并构建故障诊断数据集,将不同阶段的故障任务划分初始任务和增量任务,并确定初始任务和增量任务的故障类别数;构建初始故障诊断模型;基于初始故障诊断模型,对增量任务进行训练,包括模型自适应阶段训练和模型融合阶段训练,通过蒸馏损失将新模型和旧模型进行整合,得到整合后的故障诊断模型;利用整合后的故障诊断模型对待检测的故障轴承振动信号进行故障诊断,得到待检测的故障轴承振动信号的故障类型;与传统的深度学习方法相比,本发明能缓解灾难性遗忘问题,更符合工业应用的实际场景。
-
公开(公告)号:CN118163834A
公开(公告)日:2024-06-11
申请号:CN202410226006.4
申请日:2024-02-29
Applicant: 苏州大学
Abstract: 本发明涉及一种轨道交通走行轨绝缘破损定位装置和方法,装置包括间隔预设距离的第一检测装置和第二检测装置,第一检测装置和第二检测装置之间存在粗定位的绝缘破损点,所述绝缘破损点位于轨道交通的第一走行轨条或第二走行轨条上,方法包括第一检测装置和第二检测装置对应的钢轨均不存在钢轨焊缝时的走行轨绝缘破损定位方法、以及第一检测装置或第二检测装置对应的钢轨存在钢轨焊缝时的走行轨绝缘破损定位方法。本发明的装置简单易用,能够对走行轨绝缘破损点进行准确定位。
-
公开(公告)号:CN118133118A
公开(公告)日:2024-06-04
申请号:CN202410255566.2
申请日:2024-03-06
Applicant: 苏州大学
IPC: G06F18/241 , G06F18/2415 , G06F18/2131 , G06F18/10 , G06N3/096 , G01M13/045
Abstract: 本发明涉及一种轴承故障类型检测方法和系统,方法包括:采集各种故障类型的轴承振动信号并构建故障诊断数据集,并划分为初始任务和增量任务,并确定初始任务和增量任务的轴承故障类别数;利用ResNet‑18网络根据初始任务的数据与对应的轴承故障类别提取故障特征,构建初始故障诊断模型;在增量任务的当前增量阶段中,除获取当前增量阶段对应轴承故障类别的数据外,还结合初始任务和之前增量阶段的所有轴承故障类别及其数据,得到新的故障诊断模型;在所述新的故障诊断模型的训练过程中不断进行优化;利用优化好的新的故障诊断模型对待检测的轴承振动信号进行故障诊断。本发明能够对轴承故障类型进行有效检测。
-
公开(公告)号:CN117010149A
公开(公告)日:2023-11-07
申请号:CN202310731266.2
申请日:2023-06-20
Applicant: 苏州大学
IPC: G06F30/20 , G06F30/17 , G06F119/14
Abstract: 本发明公开了一种考虑齿轮外部激励的高速深沟球轴承故障动力学建模方法,包括以下步骤:步骤1:首先使用一个考虑到相对滑移、柔性保持架和滚子独立自由度的动态高速深沟球轴承模型;步骤2:在高速轴承模型基础上,进一步考虑了齿轮外部激励的影响,建立考虑齿面点蚀等局部故障的直齿轮啮合副描述方法;步骤3:建立完备的齿轮箱动力学模型;在前两个步骤的基础上,引入齿轮啮合传动误差、驱动电机与制动器;步骤4:使用数值求解方法对微分方程组进行求解,得到系统的动态响应。本发明,可以更加全面的描述齿轮箱中各个部件的接触、润滑、故障情况等,得到更加准确的高速轴承故障特征,为故障诊断与特征提取提供更全面的理论依据。
-
公开(公告)号:CN115270956B
公开(公告)日:2023-10-27
申请号:CN202210879607.6
申请日:2022-07-25
Applicant: 苏州大学
IPC: G06F18/2433 , G06F18/2413 , G06F18/214 , G06F18/241 , G06N3/045 , G06N3/0464 , G06N3/082 , G01M13/04
Abstract: 本发明涉及一种基于持续学习的跨设备增量轴承故障诊断方法,包括构建跨设备增量轴承健康状态数据集,按设备划分不同阶段的诊断任务;使用第一个设备的诊断任务数据构建初始诊断模型,筛选典例;基于初始诊断模型引入神经元级微调和分类器得到诊断模型;将典例与下一个设备的轴承故障诊断任务数据共同训练诊断模型,使用损失函数缩小当前阶段的诊断模型与上一阶段的诊断模型在上一阶段诊断任务数据上表现的差异,筛选典例;重复步骤S104,使用当前的诊断模型诊断所有已学习任务的轴承故障,得到轴承故障诊断结果。本发明采用持续学习方法构建一个不断积累和复用知识的诊断模型,能解决灾难性遗忘问题,以适应跨设备增量轴承故障诊断的需求。
-
公开(公告)号:CN116756483A
公开(公告)日:2023-09-15
申请号:CN202310508808.X
申请日:2023-05-08
Applicant: 苏州大学
IPC: G06F18/00 , G06F18/10 , G06F18/25 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08 , G06F123/02
Abstract: 本发明涉及一种目标工况数据不可用下的机械故障诊断方法,包括将采集的机械振动时域信号进行截取,统一样本长度并进行幅值归一化,得到数据集,并划分为多源域数据集与目标域数据集;构建域间不变表示学习网络分支,提取域间不变特征;构建域内不变表示学习网络分支,提取域内不变特征;构建融合分类器,融合域间不变特征与域内不变特征后,预测其故障类别标签;构建包括域间不变表示学习网络分支、域内不变表示学习网络分支与融合分类器的故障诊断训练模型;输入多源域数据集中的样本,利用相互学策略、特征差异最大化策略、损失函数与优化算法进行模型训练,获取训练好的故障诊断训练模型;输入目标域数据集中的样本,获取样本的故障类别。
-
公开(公告)号:CN115659224B
公开(公告)日:2023-08-25
申请号:CN202211406175.3
申请日:2022-11-10
Applicant: 苏州大学
IPC: G06F18/24 , G06F18/214 , G06F18/15 , G06N3/047
Abstract: 本发明实施例提供了一种概率引导的域对抗轴承故障诊断方法及系统,该方法包括采集振动信号构建源域数据集和目标域数据集;对轴承信号样本进行频域处理,得到样本图片;将所述源域样本图片和目标域样本图片输入提前搭建好的神经网络模型进行训练;构建第一阶段目标函数,实现鉴别器和特征生成器参数的更新;构建第二阶段目标函数,实现分类器参数的更新,神经网络模型训练完成;将目标域数据集输入训练好的神经网络模型,实现轴承故障诊断。本发明方法解决了轴承故障诊断网络特征分类能力不足的问题,轴承故障诊断的结果准确率高、鲁棒性更强,并且适用于变工况多场景、多种故障的诊断。
-
公开(公告)号:CN115112061B
公开(公告)日:2023-07-25
申请号:CN202210742688.5
申请日:2022-06-28
Applicant: 苏州大学
Abstract: 本发明涉及一种钢轨波磨检测方法及系统,包括:对正常轨道列车轴箱处振动加速度的时域信号进行稀疏优化处理,根据稀疏重构后的时域信号幅值和频域信号能量设置轨道波磨时域信号报警阈值和频域信号报警阈值,将待检测轨道列车轴箱处振动加速度的时域信号进行稀疏优化处理,将稀疏重构后的时域信号幅值和频域信号能量与时域信号报警阈值和频域信号报警阈值进行比较,当时域信号幅值和频域信号能量均大于报警阈值时,判断待检测轨道存在波磨。本发明提供的钢轨波磨检测方法使用稀疏优化方法对列车轴箱处振动加速度信号进行处理,通过设置报警阈值检测未知轨道区段,检测速度快,不影响列车正常运行,检测结果准确,可信度高。
-
公开(公告)号:CN116429420A
公开(公告)日:2023-07-14
申请号:CN202310520434.3
申请日:2023-05-10
Applicant: 苏州大学
IPC: G01M13/04 , G01M13/045
Abstract: 本发明公开了一种LSTM指导下自适应广义解调的轴承故障特征同步增强提取方法,包括以下步骤:S1:引入倾斜角来确定广义解调的解调因子;S2:通过LSTM网络模型对信号的倾斜角进行自适应预测,利用得到的解调因子构建广义解调因子矩阵;S3:通过频率—幅值图确定感兴趣的分量解调之后所处的频率位置,实现对故障特征系数的预确定;S4:构造提取算子矩阵,之后进行逆向广义解调。本发明,在广义解调方法的框架下,在不依赖于对时频脊线预提取的基础上,利用LSTM网络模型实现对解调因子的自适应构建,通过构造解调因子矩阵和提取算子矩阵等,实现对多分量信号的同步化增强提取。
-
-
-
-
-
-
-
-
-