-
公开(公告)号:CN117622142B
公开(公告)日:2025-03-04
申请号:CN202311538770.7
申请日:2023-11-17
Applicant: 苏州大学
IPC: B60W30/18 , G01S7/48 , G01S17/931 , H04B10/116 , H04L67/12 , B60Q1/34
Abstract: 本发明涉及一种基于激光雷达与可见光通信的车辆驾驶意图识别方法,包括:通过激光雷达扫描检测范围内的车辆,生成点云数据;所述点云数据包括地面点云数据;所述检测范围为自车当前行驶车道与相邻车道;根据所述点云数据,对所述检测范围内的车辆进行检测,得到目标车辆;对所述目标车辆进行跟踪,生成目标车辆跟踪数据和目标车辆检测状态;判断是否获取到目标车辆基本信息,生成第一判断结果;根据所述第一判断结果,判断驾驶意图,生成第二判断结果;根据所述第二判断结果,生成预警;本发明可以在车辆即将换道并打开转向灯的情况下提前判断出车辆的换道意图,精准信息感知利于智能车辆科学准确的决策和安全控制,提高在途运行安全。
-
公开(公告)号:CN118467995A
公开(公告)日:2024-08-09
申请号:CN202410373237.8
申请日:2024-03-29
Applicant: 苏州大学
IPC: G06F18/213 , G01M13/021 , G01M13/028 , G01M13/045 , G06N3/0464 , G06N3/084
Abstract: 本发明提供一种基于时变卷积核的机械关键部件故障特征增强方法及系统,涉及机械设备信号处理技术领域,该方法包括基于广义解调变换将变化的时频曲线解调至固定频率处,通过引入角度参数,参数化广义解调因子;将参数化的广义解调因子嵌入CNN网络中,设计时变卷积层,实现对角度参数的自适应学习更新;使用设计好的时变卷积层代替CNN网络中的第一层卷积层,构建神经网络故障诊断模型,利用构建好的神经网络故障诊断模型对采集到的变转速信号进行处理,增强转速相关故障特征。本发明方法无需依赖先验知识,可实现故障类型的有效、准确分类。
-
公开(公告)号:CN116337447A
公开(公告)日:2023-06-27
申请号:CN202211640727.7
申请日:2022-12-19
Applicant: 苏州大学
IPC: G01M13/045 , G01M17/10 , G06F18/213 , G06F18/24 , G06N3/084 , G06N3/0464
Abstract: 本发明涉及一种非平稳工况下轨道车辆轮对轴承故障诊断方法包括根据多种传感器采集的轨道车辆轮对轴承在不同非平稳工况下的多种信号获取样本数据;多通道融合得多传感器信息融合样本并进行自适应加权,生成目标多传感器信息融合数据,特征提取器提取目标多传感器信息融合数据在多传感器视角下的特征信息,存储至相对应的记忆库中;利用原型对比学习进行领域适配学习,获取域适应损失;利用源域数据集中提取的特征信息与半监督学习算法训练域共享类别分类器;利用域适应损失与半监督分类损失通过反向传播与梯度下降算法更新网络参数,获得目标网络;将数据集中没有类别标签的待测试样本数据输入至目标网络中,获取待测试样本数据的故障类别。
-
公开(公告)号:CN110555273B
公开(公告)日:2023-03-24
申请号:CN201910838978.8
申请日:2019-09-05
Applicant: 苏州大学
IPC: G06F30/17 , G06F30/27 , G06N3/088 , G06N7/01 , G06F119/04 , G06F111/08
Abstract: 本发明公开一种基于隐马尔科夫模型和迁移学习的轴承寿命预测方法,包括步骤(1)采集滚动轴承的全寿命原始信号;并提取包含时域、时频域和三角函数特征的特征集合;(2)将特征集合输入隐马尔科夫模型预测隐状态,获取故障发生时刻;(3)将来自所有源域和部分目标域的特征集合组成训练集输入构建的多层感知机模型,通过优化目标训练获得域不变特征和最优模型参数,将最优模型参数代入感知机模型获得神经网络寿命预测模型;(4)将剩余的目标域特征集输入神经网络寿命预测模型,根据输出值预测轴承的剩余寿命。本发明利用隐马尔科夫模型自动检测出故障发生时刻,之后采用基于多层感知器的迁移学习来解决不同工况条件造成的源域和目标域的分布差异。
-
公开(公告)号:CN115659224A
公开(公告)日:2023-01-31
申请号:CN202211406175.3
申请日:2022-11-10
Applicant: 苏州大学
IPC: G06F18/24 , G06F18/214 , G06F18/15 , G06N3/047
Abstract: 本发明实施例提供了一种概率引导的域对抗轴承故障诊断方法及系统,该方法包括采集振动信号构建源域数据集和目标域数据集;对轴承信号样本进行频域处理,得到样本图片;将所述源域样本图片和目标域样本图片输入提前搭建好的神经网络模型进行训练;构建第一阶段目标函数,实现鉴别器和特征生成器参数的更新;构建第二阶段目标函数,实现分类器参数的更新,神经网络模型训练完成;将目标域数据集输入训练好的神经网络模型,实现轴承故障诊断。本发明方法解决了轴承故障诊断网络特征分类能力不足的问题,轴承故障诊断的结果准确率高、鲁棒性更强,并且适用于变工况多场景、多种故障的诊断。
-
公开(公告)号:CN111458122B
公开(公告)日:2022-03-29
申请号:CN202010271309.X
申请日:2020-04-08
Applicant: 苏州大学
IPC: G01M13/00
Abstract: 本发明提供了一种匹配增强时频表示的旋转机械故障诊断方法,属于变转速旋转机械故障诊断技术领域,该方法包括:引入调频率来匹配频率变化的信号的时频特征,利用正切函数约束调频率选取范围;扩展现有的线性变换基函数e‑jωt,得到能同时增强多个时频分量的时频表示;计算对应不同时频图的峭度值,利用峭度最大准则自适应选择合适的参数,选出对应最大峭度的时频分布用于最后的时频表示;对经上一步得到的时频图上利用局部峰值搜索算法搜寻旋转机械的特征时频脊线;根据检测的时频脊线诊断旋转机械故障类型。本发明通过匹配信号中频率的变化特征来增强时频表示,可以得到更加精确的时频脊线估计,并最终完成旋转机械的故障诊断。
-
公开(公告)号:CN112629863A
公开(公告)日:2021-04-09
申请号:CN202011632478.8
申请日:2020-12-31
Applicant: 苏州大学
IPC: G01M13/045 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种变工况下动态联合分布对齐网络的轴承故障诊断方法,包括以下步骤:采集不同工况下的轴承振动数据,获得源域样本和目标域样本;构建动态联合分布对齐的深度卷积神经网络模型;将源域样本和目标域样本同时送入参数初始化的深度卷积神经网络模型,特征提取器提取源域样本和目标域样本的高层次特征;计算边缘分布距离和条件分布距离;根据边缘分布距离和条件分布距离获得联合分布距离,将联合分布距离与标签损失结合以获得目标函数;利用随机梯度下降法对目标函数进行优化,训练深度卷积神经网络模型。其能够降低域漂移的影响,使得深度学习模型能够很好完成变工况下的故障诊断任务,速度快,运算量小。
-
公开(公告)号:CN111829782A
公开(公告)日:2020-10-27
申请号:CN202010688208.2
申请日:2020-07-16
Applicant: 苏州大学
IPC: G01M13/045 , G06K9/62 , G06N20/10
Abstract: 本发明公开了一种基于自适应流形嵌入动态分布对齐的故障诊断方法,本方法通过自动计算最优的子空间维数,并计算测地线流式核和变换后的流形特征表示,可以有效地避免数据在原始欧式空间的特征扭曲。引入相似度度量A-distance定义一个自适应因子,动态调整样本数据条件分布和边缘分布的相对权重,有效地缩小了源域和目标域样本的分布差异,极大提高了变工况下滚动轴承故障诊断的准确性和有效性,该方法可解释性强,对计算机硬件资源的要求较低,执行速度更快,同时具备出色的诊断精确度、算法收敛性和参数鲁棒性。该方法尤其适用于变工况下多场景、多故障的轴承故障诊断,可广泛地应用于机械、电力、化工、航空等复杂系统的多变工况下的故障诊断任务。
-
公开(公告)号:CN110243605B
公开(公告)日:2020-04-10
申请号:CN201910674416.4
申请日:2019-07-25
Applicant: 苏州大学
IPC: G01M13/045 , G06K9/00
Abstract: 本发明公开了一种基于快速路径最优搜索和动态基角度的多源时频脊线提取方法。本发明提供了一种基于快速路径最优搜索和动态基角度的多源时频脊线提取方法,包括:步骤1:短时傅里叶变换及频带的选择。对振动信号中采用短时傅里叶分析,将轴承信号分为低频段和共振频带。本发明的有益效果:1、该发明首先应用快速路径最优搜索策略,得到连续和准确的瞬时频率脊线,然后在得到的脊线的基础上,计算对应时刻点的切角,得到频率与目标信号频率相匹配的基函数,适用于处理变转速非平稳状态下的滚动轴承振动信号。
-
公开(公告)号:CN108760316B
公开(公告)日:2019-11-05
申请号:CN201810931952.3
申请日:2018-08-16
Applicant: 苏州大学
IPC: G01M13/04
Abstract: 本发明涉及一种变分模态分解的变参信息融合方法,包括:取分解模态个数K=1,设定带宽平衡参数α,对分析信号进行VMD处理,得到一个IMF分量,将原始信号减去这个IMF分量,得到剩余分量;将所述剩余分量作为所述分析信号,重复上述步骤n次,得到n个IMF分量和n个剩余分量;根据给定优化指标方法从上述2n个分量中选出包含最多故障信息的分量,即故障模态分量;改变所述α的值,重复上述步骤N次,获得N个具有不同带宽的故障模态分量。上述变分模态分解的变参信息融合方法,本发明方法利用流形学习对变参数下VMD处理得到的多维故障模态分量进行信息融合,获得信噪比高的故障瞬态成分。
-
-
-
-
-
-
-
-
-