自主式球轮移动机器人及其控制方法

    公开(公告)号:CN104155976B

    公开(公告)日:2016-08-24

    申请号:CN201410345088.0

    申请日:2014-07-18

    Abstract: 本发明涉及自动控制技术领域,具体涉及一种球轮移动机器人及其控制方法。自主式球轮移动机器人包括:球形轮(1)、万向轮驱动机构(2)、支撑结构(3)、助力支架(6)、控制模块(4)以及传感器;其中传感器检测机器人姿态和环境信息;控制模块(4)分析环境信息得出控制策略,通过平衡和运动控制算法得到控制策略,向万向轮驱动机构(2)发送控制信号;万向轮驱动机构(2)根据控制信号驱动直流电机转动来带动球形轮(1)运动,从而实现对机器人的姿态和运动控制。本发明可以自动实现静态和动态平衡,可通过无障碍通道,机动性好,环境适应能力强。

    基于等距曲线模型的车道线检测方法

    公开(公告)号:CN103699899B

    公开(公告)日:2016-08-17

    申请号:CN201310717643.3

    申请日:2013-12-23

    Abstract: 本发明公开一种基于等距曲线模型的车道线检测方法,采用方法可识别车载摄像机图像中的多条车道线,识别范围大,识别结果不限于直线,圆弧等简单曲线,对变曲率半径的车道线也可进行识别;且可对每条车道线的种类进行识别,区分实线与虚线,识别准确率高。该方法包括对车载摄像机获得的车辆前方的全景图像进行逆投影变换的步骤、对地面俯视图进行滤波及二值化预处理的步骤、对二值化预处理后图像进行Hough变换的步骤以及在Hough空间内进行车道线及其种类识别的步骤。

    基于机器视觉的车辆队形跟驰检测方法

    公开(公告)号:CN105809106A

    公开(公告)日:2016-07-27

    申请号:CN201610099028.4

    申请日:2016-02-23

    CPC classification number: G06K9/00791 G06K9/3233 G06K9/4604

    Abstract: 本发明公开了基于机器视觉的车辆队形跟驰检测方法,车队按照行列排列,列方向按照地面引导线设置,每一行设置一个基准方向,沿基准方向的最末的车辆为基准车,在车队中每个车体的前端安装前向摄像头,每个车体靠近基准车的一侧设置侧向摄像头、另一侧设置靶标;调整前向摄像头使地面引导线在图像正中,调整侧向摄像头使靶标在图像正中;在开始时刻,获取标准前视画面和标准侧视画面,并设置标准刻线和标准靶标,标准刻线与引导线重合、标准靶标与基准车靶标重合;在车辆跟驰过程中,计算引导线偏离标准刻线的距离和偏离角、以及靶标偏离距离,最终解算出引导线实际偏离量,以及车辆与基准车的纵向距离,对车辆行驶方向进行调整。

    一种智能车辆方阵跟驰辅助驾驶方法

    公开(公告)号:CN105698783A

    公开(公告)日:2016-06-22

    申请号:CN201610027908.0

    申请日:2016-01-15

    CPC classification number: G01C21/00

    Abstract: 本发明提供一种智能车辆方阵跟驰辅助驾驶方法,过程为:确定方阵中每辆车在坐标系中所应处的位置;在车辆的相应位置安装激光传感器和红外摄像机;从方阵第一排的车辆中选定一个作为基准车,获得该基准车的位置及姿态;选定与基准车同列的所有车为列基准车,获得其姿态和位置;针对方阵中的每一行,以该行中已经进行定位的车辆为基准车,计算与该基准车相邻的待定位车辆的位置及姿态;根据之前步骤获得的所有车辆的精确位置及偏向角,将其投影至所述坐标系中,获得整体效果图,则驾驶员即可知道自己车辆所处位置,及其应该跟踪的位置。同时,方阵的整体情况及每辆车与其应当所处位置的偏差在该效果图中均被呈现。

    一种人车交互智能泊车系统

    公开(公告)号:CN104627175A

    公开(公告)日:2015-05-20

    申请号:CN201510033683.5

    申请日:2015-01-22

    CPC classification number: B60W30/06 B62D15/027 B62D15/028

    Abstract: 本发明公开了一种人车交互智能泊车系统,该系统包括环境检测模块,路径规划模块以及运动控制模块;环境检测模块检测车辆和车位尺寸发送给路径规划模块;路径规划模块包括判定阶段、初始化阶段、自由规划阶段、最终规划阶段和判优阶段;路径规划模块根据车位尺寸规划出多条泊车路径,然后根据判优准则选出最优泊车路径;运动控制模块根据最优泊车路径计算车辆控制参数,完成自主泊车;本发明的泊车系统在各种泊车环境下,都能够产生泊车路径,并且能够规划出车轮转动过程的路径,使车辆在转动方向盘的过程中不需要停车,从而保证车辆行进过程的连续性。

    一种两栖移动机器人平台
    56.
    发明授权

    公开(公告)号:CN102825988B

    公开(公告)日:2014-12-24

    申请号:CN201210202018.0

    申请日:2012-06-15

    Abstract: 本发明涉及一种两栖移动机器人平台,包括支撑平台、动力臂、旋转固定轴、胸鳍、反偏向轮、轮舵机构和尾璞,支撑平台内部装有控制模块、驱动模块,控制模块控制驱动模块为机器人平台提供驱动力,同时控制并调整平台的浮力,从而使机器人整体实现上浮、下潜、水平运动;轮舵机构安装在支撑平台的头部下方;支撑平台的尾部安装的两个动力臂在驱动电机的驱动下在水平面内相对或反向摆动;动力臂的末端固定连接反偏向轮,反偏向轮将水平的摆动转化为直线运动;尾璞安装在动力臂上,胸鳍安装在支撑平台尾部的左右两侧。本发明能够利用同一驱动动作实现在陆地和流体中的驱动,从而使机器人在不改变驱动方式的情况下实现两栖环境中的运动。

    一种地面无人移动平台底层控制系统

    公开(公告)号:CN102880127B

    公开(公告)日:2014-09-24

    申请号:CN201210332447.X

    申请日:2012-09-10

    CPC classification number: Y02P90/02

    Abstract: 本发明涉及一种无人移动平台的底层控制系统,属于自动控制技术领域。包括车载计算机、遥操作电台、底层传感器、电源档位控制器、驱动模式控制器、4通道D/A模块、刹车电机控制器、转向电机控制器、电子油门、控制模式切换开关、GPS模块和陀螺仪,外围设备为刹车电机、转向电机和电子油门;系统接收上位机发送的车辆行驶决策信息,采集底层传感器设备的数据,得到车辆行驶状态信息和遥操作信息,并通过控制油门量、刹车量、方向盘转向、档位、驱动模式等控制量来实现对地面无人移动平台的底层控制,同时可,将以上信息上传至上位机。本发明的执行机构全部由车载计算机统一控制,有效降低了上位机的负担,提高了无人移动平台的可靠性。

    压电陶瓷扑翼式机器人
    59.
    发明公开

    公开(公告)号:CN103395493A

    公开(公告)日:2013-11-20

    申请号:CN201310306705.1

    申请日:2013-07-19

    Abstract: 本发明提出一种压电陶瓷扑翼式机器人,包含机身支撑架、机翼、压电驱动器、驱动电缆、传动放大机构和驱动足。其中机翼经过仿生设计,形状与双翅目昆虫食蚜蝇的形状相似。在陆地行走时,选用压电陶瓷片为压电驱动器,压电陶瓷片与单端弯曲传动放大机构组成驱动足,驱动电缆输入两路共地的正弦波信号,分别驱动两支驱动足,利用谐振原理驱使机器人作可控的平面运动。在空中飞行时,取下驱动足,以压电陶瓷双晶片作为压电驱动器,输入驱动电压信号,经四连杆传动机构将振动放大并转换为翼的扑动,从而带动机身的飞行。该机器人简单轻便,对环境具有一定的适应能力。

    一种基于数据挖掘的地理环境特征地图构建与导航方法

    公开(公告)号:CN103389103A

    公开(公告)日:2013-11-13

    申请号:CN201310276341.7

    申请日:2013-07-03

    Abstract: 本发明公开了一种基于数据挖掘的地理环境地图构建与导航方法,属于自动控制领域。该方法流程如下:首先使用当前时刻平台周围环境的3D激光点云以及全景图像进行处理并匹配,获得平台周围环境中各物体的特征向量;然后将各物体的特征向量输入至神经网络,神经网络对特征向量归类并输出特征环境模型;再依据特征环境模型建立当前时刻局部地图或更新已有局部地图;最后根据平台的当前时刻的位置以及预测的下一时刻的位置,按照局部地图选择路线行驶;若平台未达到最终目标,则重复本流程;若已达到最终目标则该流程结束,最终的局部地图为全局地图。本方法适用于地面无人移动平台的地理环境地图构建与导航。

Patent Agency Ranking