-
公开(公告)号:CN103149556B
公开(公告)日:2014-12-17
申请号:CN201310033891.6
申请日:2013-01-29
Applicant: 北京理工大学
Abstract: 本发明公开一种用于特征点标定算法的热像仪与3D激光雷达温控标定靶。该标定装置利用热像仪与3D激光雷达分别采集标定靶上的同一组特征点,得到图像及3D点云数据,使得基于特征点的标定算法得以实现。包括发热网、发热网框架、激光挡片、俯仰转轴、水平转轴、高度调节器、温度控制器和温度传感器等。其中水平转轴和俯仰转轴调整标定靶的姿态和朝向;高度调节器调节标定靶的高度;温度控制器通过将发热网当前温度与设定的目标温度进行比较,从而调节发热网的温度。发热网交叉处的点为热像仪提供红外特征角点;当将黑色激光挡片间隔地镶嵌在发热网格中时,激光挡片为激光雷达提供深度特征角点,也可在可见光摄像机进行标定时为摄像机提供图像特征角点。
-
公开(公告)号:CN102825988B
公开(公告)日:2014-12-24
申请号:CN201210202018.0
申请日:2012-06-15
Applicant: 北京理工大学
IPC: B60F3/00
Abstract: 本发明涉及一种两栖移动机器人平台,包括支撑平台、动力臂、旋转固定轴、胸鳍、反偏向轮、轮舵机构和尾璞,支撑平台内部装有控制模块、驱动模块,控制模块控制驱动模块为机器人平台提供驱动力,同时控制并调整平台的浮力,从而使机器人整体实现上浮、下潜、水平运动;轮舵机构安装在支撑平台的头部下方;支撑平台的尾部安装的两个动力臂在驱动电机的驱动下在水平面内相对或反向摆动;动力臂的末端固定连接反偏向轮,反偏向轮将水平的摆动转化为直线运动;尾璞安装在动力臂上,胸鳍安装在支撑平台尾部的左右两侧。本发明能够利用同一驱动动作实现在陆地和流体中的驱动,从而使机器人在不改变驱动方式的情况下实现两栖环境中的运动。
-
公开(公告)号:CN102880127B
公开(公告)日:2014-09-24
申请号:CN201210332447.X
申请日:2012-09-10
Applicant: 北京理工大学
IPC: G05B19/418
CPC classification number: Y02P90/02
Abstract: 本发明涉及一种无人移动平台的底层控制系统,属于自动控制技术领域。包括车载计算机、遥操作电台、底层传感器、电源档位控制器、驱动模式控制器、4通道D/A模块、刹车电机控制器、转向电机控制器、电子油门、控制模式切换开关、GPS模块和陀螺仪,外围设备为刹车电机、转向电机和电子油门;系统接收上位机发送的车辆行驶决策信息,采集底层传感器设备的数据,得到车辆行驶状态信息和遥操作信息,并通过控制油门量、刹车量、方向盘转向、档位、驱动模式等控制量来实现对地面无人移动平台的底层控制,同时可,将以上信息上传至上位机。本发明的执行机构全部由车载计算机统一控制,有效降低了上位机的负担,提高了无人移动平台的可靠性。
-
公开(公告)号:CN102825988A
公开(公告)日:2012-12-19
申请号:CN201210202018.0
申请日:2012-06-15
Applicant: 北京理工大学
IPC: B60F3/00
Abstract: 本发明涉及一种两栖移动机器人平台,包括支撑平台、动力臂、旋转固定轴、胸鳍、反偏向轮、轮舵机构和尾璞,支撑平台内部装有控制模块、驱动模块,控制模块控制驱动模块为机器人平台提供驱动力,同时控制并调整平台的浮力,从而使机器人整体实现上浮、下潜、水平运动;轮舵机构安装在支撑平台的头部下方;支撑平台的尾部安装的两个动力臂在驱动电机的驱动下在水平面内相对或反向摆动;动力臂的末端固定连接反偏向轮,反偏向轮将水平的摆动转化为直线运动;尾璞安装在动力臂上,胸鳍安装在支撑平台尾部的左右两侧。本发明能够利用同一驱动动作实现在陆地和流体中的驱动,从而使机器人在不改变驱动方式的情况下实现两栖环境中的运动。
-
公开(公告)号:CN103149556A
公开(公告)日:2013-06-12
申请号:CN201310033891.6
申请日:2013-01-29
Applicant: 北京理工大学
Abstract: 本发明公开一种用于特征点标定算法的热像仪与3D激光雷达温控标定靶。该标定装置利用热像仪与3D激光雷达分别采集标定靶上的同一组特征点,得到图像及3D点云数据,使得基于特征点的标定算法得以实现。包括发热网、发热网框架、激光挡片、俯仰转轴、水平转轴、高度调节器、温度控制器和温度传感器等。其中水平转轴和俯仰转轴调整标定靶的姿态和朝向;高度调节器调节标定靶的高度;温度控制器通过将发热网当前温度与设定的目标温度进行比较,从而调节发热网的温度。发热网交叉处的点为热像仪提供红外特征角点;当将黑色激光挡片间隔地镶嵌在发热网格中时,激光挡片为激光雷达提供深度特征角点,也可在可见光摄像机进行标定时为摄像机提供图像特征角点。
-
公开(公告)号:CN103065323A
公开(公告)日:2013-04-24
申请号:CN201310013045.8
申请日:2013-01-14
Applicant: 北京理工大学
IPC: G06T7/00
Abstract: 本发明公开了一种基于单应性变换矩阵的分段空间对准方法,通过对较大的标定距离进行分段,针对每一分段分别求得摄像机和毫米波雷达坐标系之间的单应性变换矩阵,避免了现有技术中由于用同一个单应性变换矩阵表达两个传感器之间的坐标关系引起的误差,从而能够实现对较大标定距离目标探测的空间对准;通过推导表征摄像机和毫米波雷达的不同坐标系之间的关系,最后采用单应变换矩阵N表征两者的坐标系关系,用两个传感器分别获得的目标数据再解得单应变换矩阵N,避免了求解缩放比例因子、焦距等构成的摄像机内部参数矩阵以及旋转矩阵、平移向量构成的摄像机外部参数矩阵,大大简化了运算过程,节省运算时间。
-
公开(公告)号:CN103065323B
公开(公告)日:2015-07-15
申请号:CN201310013045.8
申请日:2013-01-14
Applicant: 北京理工大学
IPC: G06T7/00
Abstract: 本发明公开了一种基于单应性变换矩阵的分段空间对准方法,通过对较大的标定距离进行分段,针对每一分段分别求得摄像机和毫米波雷达坐标系之间的单应性变换矩阵,避免了现有技术中由于用同一个单应性变换矩阵表达两个传感器之间的坐标关系引起的误差,从而能够实现对较大标定距离目标探测的空间对准;通过推导表征摄像机和毫米波雷达的不同坐标系之间的关系,最后采用单应变换矩阵N表征两者的坐标系关系,用两个传感器分别获得的目标数据再解得单应变换矩阵N,避免了求解缩放比例因子、焦距等构成的摄像机内部参数矩阵以及旋转矩阵、平移向量构成的摄像机外部参数矩阵,大大简化了运算过程,节省运算时间。
-
公开(公告)号:CN103134594A
公开(公告)日:2013-06-05
申请号:CN201310033849.4
申请日:2013-01-29
Applicant: 北京理工大学
Abstract: 本发明涉及一种用于面特征标定算法的热像仪与3D激光雷达温控标定靶,该标定靶包括标定平面、发热网、支撑架、温度控制器、温度传感器、三脚架、隔热手柄、俯仰转轴、水平转轴和电源线。水平转轴和俯仰转轴用于调整标定靶的姿态;三脚架用于调节标定靶的高度,温度控制器通过控制流过发热网的电流调整发热网的发热功率,从而调节发热网的温度。发热网的十字交叉处为热像仪提供红外特征角点,利用热像仪采集标定靶上的红外特征角点,进而得到热像仪坐标系中的标定面特征值;标定平面为3D激光雷达提供共面点云数据,使其能够得到激光雷达坐标系中的标定平面的面特征;最后通过基于面特征的标定算法完成热像仪与3D激光雷达的标定。
-
公开(公告)号:CN102880127A
公开(公告)日:2013-01-16
申请号:CN201210332447.X
申请日:2012-09-10
Applicant: 北京理工大学
IPC: G05B19/418
CPC classification number: Y02P90/02
Abstract: 本发明涉及一种无人移动平台的底层控制系统,属于自动控制技术领域。包括车载计算机、遥操作电台、底层传感器、电源档位控制器、驱动模式控制器、4通道D/A模块、刹车电机控制器、转向电机控制器、电子油门、控制模式切换开关、GPS模块和陀螺仪,外围设备为刹车电机、转向电机和电子油门;系统接收上位机发送的车辆行驶决策信息,采集底层传感器设备的数据,得到车辆行驶状态信息和遥操作信息,并通过控制油门量、刹车量、方向盘转向、档位、驱动模式等控制量来实现对地面无人移动平台的底层控制,同时可,将以上信息上传至上位机。本发明的执行机构全部由车载计算机统一控制,有效降低了上位机的负担,提高了无人移动平台的可靠性。
-
公开(公告)号:CN103324936B
公开(公告)日:2016-05-25
申请号:CN201310197154.X
申请日:2013-05-24
Applicant: 北京理工大学
IPC: G06K9/60
Abstract: 本发明提供了一种基于多传感器融合的车辆下边界检测方法,通过采用毫米波雷达和摄像机的测量信息,得到空间对准点,再根据空间对准点信息在摄像机图像中选择包括目标车辆的感兴趣区域,通过确定感兴趣区域的k个峰值,再确定感兴趣区域的k-1个阈值,再得到最小阈值,从而得到该最小阈值划分出的灰度级区域对应的车辆下边界阴影区,最后从阴影区中获得车辆下边界阴影线,实现车辆下边界检测;通过采用一定的搜索策略,确定目标感兴趣区域,既可以使得目标感兴趣区域包括目标车辆,又能使得该区域大小适中,方便后续计算;通过采用粒子群优化算法确定k-1个阈值,简化运算步骤,提高运算速度,同时提高区域划分的精度。
-
-
-
-
-
-
-
-
-