基于神经网络修改高校教务安排的方法、装置、设备及介质

    公开(公告)号:CN110458737A

    公开(公告)日:2019-11-15

    申请号:CN201910766856.2

    申请日:2019-08-20

    Applicant: 暨南大学

    Abstract: 本发明公开基于神经网络修改高校教务安排的方法、装置、设备及介质,该方法包括:根据用户上传的教务安排约束条件生成教务安排误差计算公式;根据教务安排约束条件和/或根据教务安排误差计算公式计算出的教务安排表的误差训练CPPN神经网络;利用CPPN神经网络计算出教务安排表,并通过教务安排误差计算公式计算出教务安排表的误差;在误差不大于误差阈值的情况下,获取该误差对应的教务安排表。本发明的方法不再需要繁琐的修改过程,让教职工和教务处能够很大程度上地节省修改方案的流程,快速完成排课排考的建议提交和修改过程,提高教务处的办事效率。

    混合自动重发请求在时间相关性信道下的功率有效性设计方法

    公开(公告)号:CN108668350A

    公开(公告)日:2018-10-16

    申请号:CN201810224058.2

    申请日:2018-03-19

    Applicant: 暨南大学

    Abstract: 本发明公开了混合自动重发请求在时间相关性信道下的功率有效性设计方法,实现在相关性信道下的功率分配和速率选择的优化设计方案。该方案适用于三种常见HARQ类型(Type I、CC和IR)来最大化功率效率并同时保障通信服务质量,步骤如下:首先根据功率效率最大化和QoS约束构建目标优化问题;利用趋近性中断概率并引入辅助变量将原始问题分解成三个子问题,并依次闭合求解;确定功率效率上限,权衡频谱效率需求自适应选择HARQ类型;根据最优发送功率和传输速率来合理调整编码方案和调制方式,以实现功率效率最大化。相比于传统方法,采用趋近性中断概率方法可以有效降低实际应用中的计算复杂度,同时改善系统功率有效性性能。

    一种基于动力电池循环老化衰退决策主动再制造时域的方法

    公开(公告)号:CN117907833B

    公开(公告)日:2024-12-24

    申请号:CN202311594059.3

    申请日:2023-11-27

    Abstract: 本发明公开了一种基于动力电池循环老化衰退决策主动再制造时域的方法,该方法包括以下步骤:基于单体不一致性的动力电池性能衰退状态量化的表征;解析模型与孪生数据融合的动力电池主动再制造时域的决策;通过分析有关动力电池主动再制造时域决策的影响因素,揭示了动力电池多尺度结构下单体不一致性对其整体性能衰退状态的影响规律;在提取动力电池单体性能参数数据的基础上,通过运用Sklar理论映射为动力电池整体性能衰退状态,进一步采用循环老化衰退机理和孪生数据融合的方法对动力电池主动再制造时域上下限进行决策,从而为延长动力电池使用寿命、动态预测动力电池主动再制造时域提供重要基础。

    共享单车需求预测与投放调度方法

    公开(公告)号:CN115936240B

    公开(公告)日:2024-03-15

    申请号:CN202211665231.5

    申请日:2022-12-23

    Applicant: 暨南大学

    Abstract: 本发明涉及共享单车需求预测与投放调度方法,所述方法包括以下步骤:S1、建立XGBoost决策树,将相似和相邻的站点聚集成集群;S2、对单个站点的真实需求进行纠偏,并带入到XGBoost决策树中经训练后得到优化的站点聚类结果;S3、根据训练好的XGBoost决策树预测每个站点的借/还车需求;S4、考虑每个站点容量限制和需求到达分布,计算单车的初始投放量;S5、划分城市的调度分区;S6、建立区域内单车调度模型,获得调度路径的最优选择。本发明从共享单车的需求预测和调度优化着手,考虑多种现实情况和现实问题,设计模型和求解方法,为城市共享单车系统的运营决策提供依据,有利于快速实现城市居民的借/还车需求,方便生活,健康出行。

    一种铬掺杂二硅酸镧陶瓷的制备方法

    公开(公告)号:CN117024129B

    公开(公告)日:2024-01-16

    申请号:CN202311033478.X

    申请日:2023-08-16

    Abstract: 本发明公开了一种铬掺杂二硅酸镧陶瓷的制备方法,采用不同原料配比的LaCrO3和SiO2粉末,利用放电等离子烧结技术在1300~1500℃下直接制备铬掺杂的La2Si2O7陶瓷。本发明利用LaCrO3与SiO2粉末通过放电等离子技术制备铬掺杂二硅酸镧陶瓷块材,与现有制备方法相比,有效降低烧结温度,缩短制备周期且工艺简单。另外,本发明可通过改变原料配比来调控Cr离子的掺杂位置,进而改变二硅酸镧的性质,使其满足不同的应用需求,加强其工业生产和应用。本发明制备的铬掺杂的二硅酸镧陶瓷具有良好的高温相稳定性、较高的显微硬度和较小的断裂韧

    一种基于RQL算法的选择拆卸规划方法及系统

    公开(公告)号:CN117151425A

    公开(公告)日:2023-12-01

    申请号:CN202311364387.4

    申请日:2023-10-20

    Applicant: 暨南大学

    Abstract: 本发明提供一种基于RQL算法的选择拆卸规划方法及系统,获取待拆卸产品的数据集,结合Q‑learning算法和Rollout策略迭代采样待拆卸产品的数据集,得到待拆卸产品的优选拆卸序列,本申请的RQL(Rollout‑Q‑learning)算法是基于Rollout策略优化了Q‑learning算法在迭代过程中的动作选择,在每个决策阶段使用Rollout策略对每个可行动作进行有限步数的模拟采样之后,选择在有限步数内估计价值最大的可行动作,从而使Q‑learning算法具备更强的全局搜索能力,最终得到优选拆卸序列,相对于传统的Q‑learning算法,RQL(Rollout‑Q‑learning)算法在拆卸序列规划上有很大的性能提升,同时能够提高拆卸流程的回收效益,尽可能减少EoL产品对环境造成的危害。

Patent Agency Ranking