一种基于四元数旋转的时序知识图谱表示学习方法

    公开(公告)号:CN114756651A

    公开(公告)日:2022-07-15

    申请号:CN202210333887.0

    申请日:2022-03-30

    Abstract: 本发明涉及一种基于四元数旋转的时序知识图谱表示学习方法,包括:S1、给定一个四元组(h,r,t,τ),其中,h表示头实体,r表示关系,t表示尾实体,τ表示时间戳,将实体和时间信息进行融合并进行四元数空间中的旋转,完成模型的构建;S2、为了衡量四元组的有效性以及基于向量之间的夹角来衡量向量之间的相似性,设置评分函数对样本进行评分,并设置损失函数、参数正则化和设置时间平滑约束得到目标函数;S3、通过在时序知识图谱上的链接预测性能评估模型性能。本发明将实体随时间的动态演化特性建模为四元数空间中的旋转变换,能有效表达时序知识图谱中的复杂关系模型,通过添加参数正则化项和时序平滑约束项,可以有效提升原本模型的性能。

    基于混合损失函数扩散模型的增强CT图像生成方法及装置

    公开(公告)号:CN118379208A

    公开(公告)日:2024-07-23

    申请号:CN202410816691.6

    申请日:2024-06-24

    Abstract: 本发明公开了一种基于混合损失函数扩散模型的增强CT图像生成方法及装置,该方法包括:采集CT图像数据及其配对的造影剂增强CT图像数据,并采用数据增强方法和面向数据的正则化方法对其进行预处理,以按比例划分为训练集、测试集和验证集;构建用于生成造影剂增强CT图像的扩散模型;使用训练集对扩散模型进行迭代训练,基于混合损失函数调整扩散模型的参数,以获取训练好的扩散模型;将测试集中的CT图像数据输入至训练好的扩散模型中,得到对应的造影剂增强CT图像数据。本发明能够生成清晰可靠的造影剂增强CT图像,能够更好地捕捉数据分布的特征,提高了对不同特征的感知能力,增强了合成图像的质量,提高了模型的泛化性。

    肝胆管细胞癌术后的复发情况预测方法

    公开(公告)号:CN116741380A

    公开(公告)日:2023-09-12

    申请号:CN202310743593.X

    申请日:2023-06-21

    Abstract: 本发明公开了肝胆管细胞癌术后的复发情况预测方法,涉及计算机技术领域,包括S1构建复发情况预测模型,复发情况预测模型包括图像分割模块、指标数据分析模块和预测分析模块;S2获取训练数据集,训练数据包括CT图像和病例指标;S3训练数据集导入复发情况预测模型,并对其进行训练优化;S4获取待预测数据;S5利用优化后的复发情况预测模型对待预测数据进行分析得到,肝胆管细胞癌术后的复发情况;除了对CT图像进行充分利用外,本方法还将病例所对应的指标数据与其图像数据进行了融合使用,以补充CT图像无法表达的信息。通过不断地优化训练,最终得到了具有良好性能的术后复发情况预测模型。

    一种基于深度学习的单阶段实例分割方法

    公开(公告)号:CN116740108A

    公开(公告)日:2023-09-12

    申请号:CN202310682616.0

    申请日:2023-06-09

    Abstract: 本发明公开了一种基于深度学习的单阶段实例分割方法,本申请通过传统的边缘检测算子提取到每个实例的边缘信息,从而让网络在训练学习的过程中显示的监督对实例轮廓的学习,边缘信息的融入不仅提升了实例掩码的分割精度,而且融入边缘信息后的算法在分割掩码边缘处的表现更精细,并且本申请通过原型掩码分组后再融合的方法,将原型掩码的融合过程从一次增加为两次,两次融合的方式不仅提升了实例掩码的分割效果而且增加了整个算法的泛化能力。

    一种基于生成对抗网络的两阶段图像生成方法

    公开(公告)号:CN114972568A

    公开(公告)日:2022-08-30

    申请号:CN202210623258.1

    申请日:2022-06-01

    Abstract: 本发明涉及一种基于生成对抗网络的两阶段图像生成方法,包括:图像特征生成步骤:通过残差网络捕获输入图像的特征,训练一个特征生成网络,使用GAN拟合图像经过捕获网络后的特征进而得到特征生成器,并通过判别器区分图像经过捕获网络的特征和特征生成器生成的特征;图像生成步骤:固定图像特征生成步骤训练得到的特征生成器的参数,加入到新的图像生成网络,让随机噪声先经过特征生成器,然后将输出传入到图像生成器中得到最终生成的图像。本发明在阶段一先通过一个生成网络学习图像的特征,然后在阶段二通过对抗网络生成图像。相比于传统的GAN优化方法,能够降低GAN的训练难度、提高生成模式的多样性、提升图像生成质量。

Patent Agency Ranking