-
公开(公告)号:CN110443770A
公开(公告)日:2019-11-12
申请号:CN201910737998.6
申请日:2019-08-12
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心) , 武汉大学
Inventor: 丁忆 , 李朋龙 , 连蓉 , 王亚林 , 徐永书 , 张泽烈 , 叶立志 , 胡翔云 , 胡艳 , 陈静 , 罗鼎 , 段松江 , 刘金龙 , 陈甲全 , 吴凤敏 , 王小攀 , 钱进 , 魏文杰 , 曾远文 , 李晓龙
IPC: G06T5/00
Abstract: 本发明公开了一种基于离散粗糙度估计的机载激光点云数据噪声检测方法,包括步骤:读取机载激光点云数据,并构建离散点云TIN模型;根据离散点云TIN模型,获取模型中各顶点的一环邻域、二环邻域;采用离散粗糙度估计算子,计算各点的离散粗糙度;计算各点的二环邻域离散粗糙度均值和二环邻域粗糙度标准差;计算各点的二环邻域高程均值和二环邻域高程标准差;标记噪声点。其显著效果是:提高了机载激光点云数据噪声检测的智能化程度,极大地提高了机载激光点云数据处理效率及后续处理精度。
-
公开(公告)号:CN119597728A
公开(公告)日:2025-03-11
申请号:CN202411665154.2
申请日:2024-11-20
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06F16/21 , G06F16/2453
Abstract: 本申请涉及数据处理技术领域,提供一种像元光谱数据库优化方法及相关装置,所述方法包括获取初始像元光谱数据库;采用线性可分性定量化分析法对初始像元光谱数据库中的初始像元光谱数据进行筛选,得到第一次筛选后的像元光谱数据库子集;采用非线性可分性法对第一次筛选后的像元光谱数据库子集进行筛选,得到第二次筛选后的像元光谱数据库子集,得到优化后的像元光谱数据库。能够从低纬度的线性角度以及高纬度的非线性角度对像元光谱数据库进行两次筛选,剔除像元光谱数据库中的冗余数据和噪声,进而优化像元光谱数据库,提高像元光谱数据库的数据质量。
-
公开(公告)号:CN118918475A
公开(公告)日:2024-11-08
申请号:CN202410983698.7
申请日:2024-07-22
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V20/10 , G06V20/52 , G06V10/26 , G06V10/40 , G06V10/42 , G06V10/54 , G06V10/58 , G06V10/762 , G06V10/764 , G06V10/77 , G06V10/80
Abstract: 本发明公开了一种多维度多尺度遥感与地形特征融合的耕地非农化智能监测方法,步骤1、获取高分辨率影像、高光谱影像、DEM数据、耕地真值矢量数据、已调查监测的耕地矢量数据;步骤2、分割和聚类超像素地物对象;步骤3、以超像素地物对象为单位,提取各超像素地物对象范围内的特征;步骤4、将训练区提取的各特征组合成每个超像素地物对象的特征向量,构建超像素耕地对象训练样本数据;步骤5、训练耕地对象识别模型;步骤6、提取测试区耕地;步骤7、基于提取的测试区耕地和已调查监测的耕地矢量数据,利用空间叠置分析自动提取耕地变为非耕地的图斑,对该图斑进行优化、过滤筛选出耕地非农化图斑。本发明具有实操性、便捷性、可行性等优势。
-
公开(公告)号:CN117726687B
公开(公告)日:2024-06-21
申请号:CN202311851986.9
申请日:2023-12-29
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供了一种融合实景三维与视频的视觉重定位方法,包括基于高空云台和连接所述高空云台的摄像机实时获取视频流和摄像机的位姿,并对所述视频流进行视频帧图像预处理;基于所述摄像机的历史监控视频和实景三维数据作为输入,标定出的视频帧图像的位姿信息,并构建出带有图像特征信息和对应三维空间信息的视觉特征库;采用SIFT算法对包含目标点的视频帧进行特征点提取,将所述特征点输入所述视觉数据库查询特征点对应的一组2D‑3D点对;对所述2D‑3D点对采用solvePnP算法来计算出对应目标点的摄像机的位姿,并用RANSAC算法剔除异常值;采用投影变换,将目标点的2D坐标投影转换为目标点的三维坐标。通过视觉重定位技术计算目标点位置,提高了视觉定位的精度和效率。
-
公开(公告)号:CN117011698B
公开(公告)日:2024-05-03
申请号:CN202310753327.5
申请日:2023-06-25
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V20/10 , G06V10/774 , G06V10/764 , G06V10/26 , G06V20/70 , G06V10/82
Abstract: 本发明公开了一种多维度和多模型的地表全覆盖解译样本集评价方法,步骤1:构建地表覆盖解译样本集评价指标;步骤2:建立指标打分模型和泛化性评价模型;步骤3:将待评价样本集分别训练指标打分模型和泛化性评价模型,指标打分模型得到各评价指标得分;步骤4:对各评价指标得分进行交叉综合分析并加权计算得出指标评分;步骤5:构建泛化性评估测试数据集;步骤6:在泛化性评估测试数据集对泛化性评价模型进行测试,得到泛化性评分;步骤7;建立指标评分和泛化性评分的评级,若评级不同,则取较低评级为最终样本集评价。本发明从样本集自身特性和模型训练泛化性两个角度出发,使得地表覆盖解译样本集的评价更加有效、客观。
-
公开(公告)号:CN117036756B
公开(公告)日:2024-04-05
申请号:CN202310994138.7
申请日:2023-08-08
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V10/75 , G06V10/74 , G06V10/82 , G06N3/0455
Abstract: 本发明公开了一种基于变分自动编码器的遥感图像匹配方法及系统,包括:步骤S1:获取遥感影像图像上的待匹配图像块;步骤S2:利用变分自编码器提取所述待匹配图像块和对应遥感影像底图的特征,获得所述待匹配图像块和所述遥感影像图像的各兴趣点集;步骤S3:将各所述兴趣点集进行特征尺度和主导方向分配;步骤S4:使用归一化互相关匹配算法对所述步骤S3中特征尺度和主导方向分配后的兴趣点集进行匹配,得到匹配度矩阵得分,根据所述匹配度矩阵得分确定最佳匹配区域。本发明提高了遥感图像匹配的精度和工作效率。
-
公开(公告)号:CN117636179A
公开(公告)日:2024-03-01
申请号:CN202311478183.3
申请日:2023-11-08
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V20/13 , G06V10/774 , G06V10/80 , G06T7/136 , G06T7/194
Abstract: 本发明涉及数字图像处理技术领域,且公开了一种全局特征交互变化检测方法,具体是指:利用采集设备获取同一区域两个时期的影像数据;原始数据集进行数据预处理;构建孪生网络模型;在孪生网络模型的输入层进行特征融合并得到相应层级的特征表示;比较两个时期的相应层级的特征表示判断该层级特征表示是否存在变化;对层级特征表示存在变化的区域进行变化分割并评估;评估变化检测不合格率;对变化检测不合格的区域进行排除问题点;将变化检测的结果进行可视化展示;有利于两期影像的特征在网络浅层就开始交互,使得网络的每一层都参与语义变化信息的学习大大的提升了网络性能,还提高了语义变化区域的检出率。
-
公开(公告)号:CN115880325A
公开(公告)日:2023-03-31
申请号:CN202211562504.3
申请日:2022-12-07
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06T7/181 , G06T5/00 , G06F18/2321
Abstract: 本发明提供了一种基于点云维度和空间距离聚类的建筑物轮廓自动提取方法,包括:S1、对带有真实地理坐标的激光点云进行去噪处理;S2、通过对所述激光点云进行点云滤波,分离场景中的地面点云及非地面点云;S3、计算所述非地面点云所属维度可能性,通过空间聚类分析获取建筑物点云;S4、获取建筑物点云轮廓,并拟合轮廓函数。本发明数据源采用激光点云,不仅能解决传统方法中由于遥感影像分辨率低导致的地物分类不准确等问题,也能面向大场景开展建筑物轮廓提取,还通过计算点云所属维度,从非地面点云中分离现状点云、面状点云和散状点云,再依据空间距离聚类方法准确提取建筑物点云。不光使得提取建筑物点云的结果更精确,还提升了效率。
-
公开(公告)号:CN115761020A
公开(公告)日:2023-03-07
申请号:CN202211476822.8
申请日:2022-11-23
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06T9/00 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了一种基于神经网络自动构建的影像数据压缩方法,包括步骤:待压缩影像数据预处理;初始化神经网络种群;神经网络种群的迭代训练与更新;神经网络种群演化;导出数据完成压缩。其显著效果是:通过神经网络对影像数据进行编码和重建,将影像数据压缩存储至神经网络的参数中,大幅减少了数据占用的存储空间;具有更强的通用性和易用性,能够用于压缩各种类型、不同规模、不同复杂度的影像数据集。
-
公开(公告)号:CN115661655A
公开(公告)日:2023-01-31
申请号:CN202211368443.7
申请日:2022-11-03
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V20/10 , G06V10/58 , G06V10/77 , G06V10/80 , G06V10/82 , G06V10/764 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种高光谱和高分影像深度特征融合的西南山区耕地提取方法,包括步骤:制作训练样本集;构建高光谱影像和高分影像协同双输入单输出语义分割卷积神经网络;输入所述训练样本集对高光谱影像和高分影像协同双输入单输出语义分割卷积神经网络进行训练;采用训练后的高光谱影像和高分影像协同双输入单输出语义分割卷积神经网络模型对待识别测试区影像进行处理,获得耕地提取结果。其显著效果是:设计了高光谱影像和高分影像协同的双输入单输出卷积神经网络,综合利用了高分辨率影像的空间结构特征和高光谱影像的光谱特征,实现了对西南山地区域耕地的精准提取,显著提高了目标提取精度。
-
-
-
-
-
-
-
-
-