-
公开(公告)号:CN115221969A
公开(公告)日:2022-10-21
申请号:CN202210898574.X
申请日:2022-07-28
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于EMD数据增强和并行时空卷积网络(SCN)的运动想象脑电信号识别方法,该方法包括步骤:先对原始脑电信号进行预处理,将预处理的脑电信号采用EMD分解得到本征模态,本征模态按照时间维度分段,并与另一相同标签样本不重复的本征模态段进行组合,进而生成更多符合原始脑电信号特征的人造数据,以解决脑电信号样本量少的问题。接着设计了一种并行时空卷积网络,第一层在时间上做卷积,第二层在通道上做卷积,可充分提取脑电信号的时空特征,并考虑运动想象的节律主要分布在μ和β节律,所以分别将脑电信号的μ和β频段作为并行时空卷积网络的输入,以提取脑电信号时、空、频域的特征并分类。本发明可以有效克服因脑电信号数据量少导致的识别准确率低的问题。
-
公开(公告)号:CN111046900B
公开(公告)日:2022-10-18
申请号:CN201911023691.6
申请日:2019-10-25
Applicant: 重庆邮电大学
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明请求保护一种基于局部流形正则化的半监督生成对抗网络图像分类方法,该方法将局部流形正则化引入半监督生成对抗网络。该方法基于生成对抗网络对数据流形优秀的拟合能力,引入局部流形正则化,可以很好地解决判别器过度训练问题。通过在判别器和生成器的损失函数中加入流形正则化项,以对数据流形的突变进行惩罚,能够防止模型陷入局部崩溃,增强模型对数据流形的局部扰动保持不变性,使模型具有更好的鲁棒性。结合局部流形正则化的半监督生成对抗网络图像分类方法在半监督图像分类问题上可显著提高图像分类的准确率。
-
公开(公告)号:CN111012336B
公开(公告)日:2022-08-23
申请号:CN201911241265.X
申请日:2019-12-06
Applicant: 重庆邮电大学
IPC: A61B5/369 , A61B5/374 , A61B5/00 , G06V10/764 , G06V10/774 , G06V10/80 , G06K9/62 , G06T3/40 , G06N3/04
Abstract: 本发明请求保护一种时空特征融合的并行卷积神经网络运动想象脑电图识别方法。以运动想象脑电信号作为研究对象,提出一种新的深度网络模型‑并行卷积神经网络提取运动想象脑电信号的时空特征。与传统脑电分类算法往往丢弃脑电空间特征信息不同,通过快速傅里叶变换,提取Theta波(4‑8Hz)、alpha波(8‑12Hz)以及beta波(12‑36Hz),生成2D脑电特征图。基于多重卷积神经网络对脑电特征图进行训练,提取空间特征。此外,利用时间卷积神经网络进行并行训练,提取时序特征。最后基于Softmax对空间特征以及时序特征进行融合以及分类。实验结果表明,并行卷积神经网络具有良好的识别精度,并且优于其他最新的分类算法。
-
公开(公告)号:CN112784500B
公开(公告)日:2022-07-01
申请号:CN202110304189.3
申请日:2021-03-22
Applicant: 重庆邮电大学
IPC: G06F30/27 , G06N3/08 , G06F111/04
Abstract: 本发明涉及一种基于深度学习和PSCAD的电磁暂态仿真模型的敏捷生成方法,属于电力系统仿真建模领域,包括以下步骤:S1:采用卷积神经网络与多目标检测算法模型结合的方式建立电力系统识别模型;S2:基于矢量数据分析,构建电力系统拓扑判据;S3:基于训练完成的电力系统识别模型以及拓扑判据,识别电力系统图形文件,进而生成符合仿真软件PSCAD要求的电磁暂态仿真模型文件。本发明方法将深度学习技术应用到电力系统仿真建模中,能基于电力系统图形文件快速建立电磁暂态仿真模型,可提高仿真建模的效率,并降低仿真人员的工作强度。
-
公开(公告)号:CN114492501A
公开(公告)日:2022-05-13
申请号:CN202111519739.X
申请日:2021-12-13
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于改进SMOTE算法的脑电信号样本扩充方法、介质及系统,使用脑电信号采集仪器采集脑电信号数据;对脑电信号进行包括带通滤波、基线校验、归一化在内的方法进行预处理,划分为测试数据集与训练数据集;使用改进的SMOTE算法对脑电信号进行样本筛选并作为原始样本;将样本分成safe、danger以及noise三种类型;使用幅频加噪技术对在原始样本的基础上合成人工样本,从而实现数据集的样本扩充,合并成为新的训练数据集;利用卷积神经网络进行性能测试。本发明相比其余传统脑电数据样本扩充方法能更有效地提升生成新样本的质量与数量,使得训练卷积神经网络时有效提取特征,提升分类准确度,一定程度上解决了脑电信号数据集样本量小的问题。
-
公开(公告)号:CN114358389A
公开(公告)日:2022-04-15
申请号:CN202111520535.8
申请日:2021-12-13
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种结合VMD分解和时间卷积网络的短期电力负荷预测方法,首先使用变分模态分解(VMD)对原始负荷数据进行处理,将负荷序列分解得到多个本征模态函数(IMF),以降低神经网络预测模型输入数据的复杂程度。然后,分别计算各个IMF分量的样本熵(SE),将相近样本熵值的分量合并为一个新的序列,以减少所需训练的模型数量,最后利用时间卷积网络(TCN)来拟合各个序列的历史数据和预测数据的非线性关系,并叠加各模型的预测结果得到最后的预测值。本发明相比于其他负荷预测传统方法,具有更高的预测精度。
-
公开(公告)号:CN114254614A
公开(公告)日:2022-03-29
申请号:CN202111510160.7
申请日:2021-12-10
Applicant: 重庆邮电大学
IPC: G06F40/194 , G06F40/247 , G06F16/35
Abstract: 本发明公开了一种结合知网与词林的词语相似度获取方法及系统,利用《知网》义原层次树计算知网义原信息内容含量;并构建第一词语相似度计算模型;根据扩展版《同义词词林》词林拓扑树中的路径信息构建第二词语相似度计算模型;根据待测词语对在《知网》和扩展版《同义词词林》中的分布情况,综合两个计算模型的计算结果,获得待测词语对的最终词语相似度,在原本的信息内容含量的基础上引入义原节点的密度信息,能够得到更符合人类判断的词语相似度计算结果,同时在词林的计算过程中设置关于路径信息的权重参数,通过改变该参数的值,得到更高的皮尔森相关系数,更符合人类主观判断的结果,从而提高词语相似度的计算精度和范围。
-
公开(公告)号:CN108304823B
公开(公告)日:2022-03-22
申请号:CN201810156983.6
申请日:2018-02-24
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于双卷积CNN和长短时记忆网络的表情识别方法。首先,对得到的表情图片进行去均值、滤波、归一化等预处理;然后,再将预处理过后的表情图片输入到双卷积层和池化层中提取其特征;紧接着,利用全连接层和长短时记忆网络(LSTM)进一步提取其特征,最后,利用支持向量机(SVM)识别其表情特征并输出分类结果。本发明能充分利用人脸表情的时空特征,提取那些不够明显或是容易混淆的表情特征,可有效提升表情识别率。
-
公开(公告)号:CN108647206B
公开(公告)日:2021-11-12
申请号:CN201810421422.4
申请日:2018-05-04
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种基于混沌粒子群优化CNN网络的中文垃圾邮件识别方法,首先使用分词器对中文垃圾邮件数据集进行分词、去停用词等预处理;其次采用Word2vec模型获取词向量,通过对词向量求和取平均值获得中文垃圾邮件的文本向量;然后在粒子群算法中引入混沌思想来训练卷积神经网络的网络参数;基于混沌粒子群优化卷积神经网络建立中文垃圾邮件分类模型;最后采用测试集通过所建立的模型实现垃圾邮件分类并计算分类正确率。本发明通过混沌粒子群优化算法寻优参数所建立的模型能够快速收敛,具有良好的鲁棒性和稳定性,同时能够提高中文垃圾邮件的分类识别率。
-
公开(公告)号:CN113006348A
公开(公告)日:2021-06-22
申请号:CN202110257664.6
申请日:2021-03-09
Applicant: 重庆邮电大学
Abstract: 本发明属于建筑幕墙自动化安装技术领域,涉及一种高空幕墙自动安装型智能机器人,包括:板材堆放台,用于存放板材;板材运输升降台,用于提升板材;智慧安装机器人,用于将运输升降台上的板材安装至幕墙;智能送料机器人,用于自动抓取板材堆放台上的板材并自动移动至运输升降台;剪叉式承重升降台,用于提升智慧安装机器人;履带式基座,用于安装所述板材堆放台、运输升降台、剪叉式承重升降台;以及控制室,设置在履带式基座上,用于各部分协调动作以及移动式作业。该智能型机器人可适用于高空幕墙板材的自动化安装,增加施工效率,减少施工人员的伤亡。
-
-
-
-
-
-
-
-
-