基于卷积-堆叠降噪编码网络的半监督学习图像识别方法

    公开(公告)号:CN110232341A

    公开(公告)日:2019-09-13

    申请号:CN201910464739.0

    申请日:2019-05-30

    Abstract: 本发明请求保护一种基于卷积-堆叠降噪编码网络的半监督学习图像识别方法,结合有监督训练的卷积神经网络和无监督学习的堆叠降噪自动编码机提出一种半监督学习网络,以在样本量不足的情况下提取更具表达性的高维特征,训练出更好的网络参数。利用卷积神经网络对样本数据进行有监督训练,提取图像特征同时避免空间特征的破坏。再把训练得到的特征向量输入到堆叠降噪自动编码机进行无监督学习,实现进一步特征学习,降低小样本带来的训练困难,后基于多层人工神经网络进行分类实现。将模型用于HLC2000手写汉字数据集中的复杂字、中等字、简单字、相似字进行脱机手写汉字识别,实验结果表明该模型的平均识别率能达到97%以上,并且结果较为稳定。

    时空特征融合的并行卷积网络运动想象脑电图分类方法

    公开(公告)号:CN111012336A

    公开(公告)日:2020-04-17

    申请号:CN201911241265.X

    申请日:2019-12-06

    Abstract: 本发明请求保护一种时空特征融合的并行卷积神经网络运动想象脑电图识别方法。以运动想象脑电信号作为研究对象,提出一种新的深度网络模型-并行卷积神经网络提取运动想象脑电信号的时空特征。与传统脑电分类算法往往丢弃脑电空间特征信息不同,通过快速傅里叶变换,提取Theta波(4-8Hz)、alpha波(8-12Hz)以及beta波(12-36Hz),生成2D脑电特征图。基于多重卷积神经网络对脑电特征图进行训练,提取空间特征。此外,利用时间卷积神经网络进行并行训练,提取时序特征。最后基于Softmax对空间特征以及时序特征进行融合以及分类。实验结果表明,并行卷积神经网络具有良好的识别精度,并且优于其他最新的分类算法。

    基于卷积-堆叠降噪编码网络的半监督学习图像识别方法

    公开(公告)号:CN110232341B

    公开(公告)日:2022-05-03

    申请号:CN201910464739.0

    申请日:2019-05-30

    Abstract: 本发明请求保护一种基于卷积‑堆叠降噪编码网络的半监督学习图像识别方法,结合有监督训练的卷积神经网络和无监督学习的堆叠降噪自动编码机提出一种半监督学习网络,以在样本量不足的情况下提取更具表达性的高维特征,训练出更好的网络参数。利用卷积神经网络对样本数据进行有监督训练,提取图像特征同时避免空间特征的破坏。再把训练得到的特征向量输入到堆叠降噪自动编码机进行无监督学习,实现进一步特征学习,降低小样本带来的训练困难,后基于多层人工神经网络进行分类实现。将模型用于HLC2000手写汉字数据集中的复杂字、中等字、简单字、相似字进行脱机手写汉字识别,实验结果表明该模型的平均识别率能达到97%以上,并且结果较为稳定。

    一种基于时空特征加权卷积神经网络的脑电信号识别方法

    公开(公告)号:CN110929581A

    公开(公告)日:2020-03-27

    申请号:CN201911024631.6

    申请日:2019-10-25

    Abstract: 本发明请求保护一种基于时空特征加权卷积神经网络的脑电信号识别方法。包括步骤:先使用离散小波变换对运动想象脑电信号进行去噪。接着设计了一种时空特征加权卷积神经网络对处理后的脑电信号进行特征提取。第一层的卷积操作在运动想象脑电信号的时间尺度上进行,第二层的卷积操作在通道尺度上进行,这样提取的特征包含了运动想象脑电信号的时空特性;由于提取到的每个特征的重要程度不一样,所以在网络中加入了特征加权的模块,以使得重要的特征突出化,不重要的特征弱化。由该模型提取到的特征能够更加有效地反映各类运动想象脑电信号的特性,能够提高运动想象脑电信号的识别准确率。

Patent Agency Ranking