-
公开(公告)号:CN114637827A
公开(公告)日:2022-06-17
申请号:CN202111471323.5
申请日:2021-12-04
Applicant: 电子科技大学长三角研究院(湖州)
IPC: G06F16/332 , G06F16/951 , G06K9/62 , G06N3/04 , G06N3/08 , G06Q40/04
Abstract: 本发明公开了一种基于图神经网络的碳交易事件抽取方法,属于自然语言处理技术领域。本发明首先定向爬取中文碳交易文本,对文本进行清洗和预处理,获取相应的数据集;然后通过预处理模型BERT和BiGRU网络,融合词性特征,提取长距离语义信息,获得词级特征和句级特征;再者,通过CRF模型提取句子中的候选触发词和候选论元;然后基于候选事件元素构建图神经网络节点,根据句级特征相似度构建图神经网络边,加入多头注意力机制,通过图神经网络学习事件触发词和事件论元的依赖关系;最后基于全连接层和Sigmoid层分类事件候选元素。本发明针对中国新兴的碳交易市场的非结构化信息,可理解深层语义信息,关注句子中重要的词,有效提取结构化的碳交易事件信息。
-
公开(公告)号:CN114639082A
公开(公告)日:2022-06-17
申请号:CN202111471304.2
申请日:2021-12-04
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明公开了一种基于改进SiamFC的单目标交通标志跟踪方法。该发明在多分辨率单目标检测方向上有一定的通用性,该专利以交通标志跟踪为说明案例,交通标志的跟踪采集易存在光照不均、模糊等影响。针对单目标跟踪问题,将SiamFC算法中的骨干网络由AlexNet变为ResNet‑50,以孪生网络(siamFC)为基础,引入多分辨率在线选择分支方法,加入分类和回归分支,优化单目标跟踪中遇到的形变、尺度变化等相关问题,使跟踪过程中更加准确,并且通过不同的数据集对实验数据进行整理及研究,最终实现了单目标跟踪算法,该算法可以在复杂的背景环境下跟踪单目标对象且在目标对象发生较大位移或者遮挡时依然取得了较好的效果。
-
公开(公告)号:CN114612814A
公开(公告)日:2022-06-10
申请号:CN202111471321.6
申请日:2021-12-04
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明公开了一种基于改进YOLOv4的电梯内电动车检测方法。该发明在电梯检测方向上具有一定的通用性,该专利以电梯内电动车检测为说明案例。电梯内电动车中存在大量的误检缺陷以及速度慢。针对速度慢,在YOLOv4网络结构中改进了网络结构,将将CSPDarkNet‑53改为CSPDarkNet‑48,并将PANet结构减半;针对误检缺陷,考虑到本发明中电动自行车数据集的输入大小相差不大,且大多为中小型目标,为了更好地识别出目标并匹配输出特征图,采用2*3=6的预测帧作为候选。基于改进YOLOv4算法模型能够精准的识别电梯内电动车,且对于误检缺陷也能够取得较好的识别效果。
-
公开(公告)号:CN114596316A
公开(公告)日:2022-06-07
申请号:CN202111479069.3
申请日:2021-12-04
Applicant: 电子科技大学长三角研究院(湖州)
Abstract: 本发明提出了一种基于语义分割的改进型DeepLabv3+技术来尽可能多的保留道路图像分割中的细节特征。该发明在图像分割细节提取方向上具有一定的通用性,该专利以道路图像分割为说明案例。传统的道路分割方法中存在着道路的细节特征被当成噪声滤除的不足,针对该问题,本发明引用了深度学习中的通用语义分割框架DeepLabv3,并对传统的人工图像分割以及采用MobileNetV2的分割所产生的细节特征滤除问题对DeepLabv3进行了进一步的改进。基于语义分割改进后的DeepLabv3+算法模型能够用于对具有复杂背景噪声的无人机图像进行道路分割并且在复杂的背景下实现细节特征的抓取。
-
-
-