一种基于图神经网络的碳交易文本事件抽取方法

    公开(公告)号:CN114637827A

    公开(公告)日:2022-06-17

    申请号:CN202111471323.5

    申请日:2021-12-04

    Abstract: 本发明公开了一种基于图神经网络的碳交易事件抽取方法,属于自然语言处理技术领域。本发明首先定向爬取中文碳交易文本,对文本进行清洗和预处理,获取相应的数据集;然后通过预处理模型BERT和BiGRU网络,融合词性特征,提取长距离语义信息,获得词级特征和句级特征;再者,通过CRF模型提取句子中的候选触发词和候选论元;然后基于候选事件元素构建图神经网络节点,根据句级特征相似度构建图神经网络边,加入多头注意力机制,通过图神经网络学习事件触发词和事件论元的依赖关系;最后基于全连接层和Sigmoid层分类事件候选元素。本发明针对中国新兴的碳交易市场的非结构化信息,可理解深层语义信息,关注句子中重要的词,有效提取结构化的碳交易事件信息。

    一种基于图注意力机制的经济领域知识图谱补全算法

    公开(公告)号:CN114625881A

    公开(公告)日:2022-06-14

    申请号:CN202111471322.0

    申请日:2021-12-04

    Abstract: 本发明提出一种基于ERP‑GAT的经济领域知识图谱补全算法。ERP‑GAT算法采用编码器‑解码器结构,编码器引入图注意力机制,输入实体嵌入矩阵和关系嵌入矩阵,计算每一个目标实体相邻的三元组的注意力分数,并更新嵌入矩阵,能够获取给定实体或节点周围的多跳关系、获取给定实体附近的丰富的语义信息和关系中所扮演的角色、对现有的知识在语义上相似的关系群进行巩固,解码器使用ConvKB模型,使用卷积层得到评分函数来分析在每一个维度上的全局嵌入特性并概括ERP‑GAT模型中的过渡特性。最终在标准数据集FB15K237的五项指标和NELL‑995的四项指标上相较其他现有算法有显著提升,取得了知识图谱补全任务的最佳效果。

Patent Agency Ranking