一种水下机器人的电缆自动收放设备及自动收放方法

    公开(公告)号:CN107257120A

    公开(公告)日:2017-10-17

    申请号:CN201710335248.7

    申请日:2017-05-12

    CPC classification number: H02G11/02 H02G1/10

    Abstract: 本发明公开一种水下机器人的电缆自动收放设备及自动收放方法。其中,所述设备包括:防水外壳、卷线装置、控制装置、供电装置、通信装置和动力装置,控制装置分别与卷线装置、通信装置和动力装置通信连接,卷线装置和供电装置设置在防水外壳里;卷线装置用于收放水下机器人的电缆;控制装置用于根据接收到的水下机器人发送的信息控制卷线装置收放电缆,以及用于通过动力装置控制防水外壳的移动;供电装置为动力装置、卷线装置、通信装置和水下机器人提供电能;通信装置与水下机器人进行通信;动力装置用于使防水外壳在水面上移动并保持平衡。本发明提供的水下机器人的电缆自动收放设备及自动收放方法,提高了对水下机器人的电缆的收放效率。

    一种水下机器人的电缆自动收放设备及自动收放方法

    公开(公告)号:CN107257120B

    公开(公告)日:2018-11-30

    申请号:CN201710335248.7

    申请日:2017-05-12

    Abstract: 本发明公开一种水下机器人的电缆自动收放设备及自动收放方法。其中,所述设备包括:防水外壳、卷线装置、控制装置、供电装置、通信装置和动力装置,控制装置分别与卷线装置、通信装置和动力装置通信连接,卷线装置和供电装置设置在防水外壳里;卷线装置用于收放水下机器人的电缆;控制装置用于根据接收到的水下机器人发送的信息控制卷线装置收放电缆,以及用于通过动力装置控制防水外壳的移动;供电装置为动力装置、卷线装置、通信装置和水下机器人提供电能;通信装置与水下机器人进行通信;动力装置用于使防水外壳在水面上移动并保持平衡。本发明提供的水下机器人的电缆自动收放设备及自动收放方法,提高了对水下机器人的电缆的收放效率。

    多模态成像中图像重建方法、装置和多模态成像技术系统

    公开(公告)号:CN112862924B

    公开(公告)日:2022-11-25

    申请号:CN202011627364.4

    申请日:2020-12-31

    Abstract: 本发明提供一种多模态成像中图像重建方法、装置和系统,包括:接收数字滤波装置输出的任一滤波后信号;若所述任一滤波后信号为超声类型或光声类型,则基于多角度观测相控聚焦空间复合成像确定输出的所述任一滤波后信号对应的复合图像;若所述任一滤波后信号为弹性模态类型,则对所述任一滤波后信号依次进行组织位移估计、方向性滤波器和波速估计,确定输出的所述任一滤波后信号对应的弹性重建图像。本发明提供的方法、装置和系统,实现了多模态成像中图像重建输出的任一类型滤波后信号对应的重建图像都提升效果、提高分辨率且降低运算量,并且多种模态类型信号进行图像合成使最终成像更准确效果更好。

    内镜功能柜、内镜转运及洗消系统和方法

    公开(公告)号:CN108836487A

    公开(公告)日:2018-11-20

    申请号:CN201810810467.0

    申请日:2018-07-18

    Abstract: 本发明涉及内镜医疗辅助设备技术领域,提供内镜功能柜、内镜转运及洗消系统和方法。内镜功能柜包括容纳室,容纳室的轨道上设置有取送机构,用于将内镜周转盘运进/运出容纳室。内镜周转盘上设置有第一接头,取送机构包括第二接头。取送机构满足:沿着外飘轨道运动时,第二接头运动至第一接头下方;朝上转动时,第一接头和第二接头配合。容纳室数量为多个且开口端呈阶梯状分布。该内镜功能柜通过容纳室上设置有轨道,且轨道上设置有取送机构,从而可以自动将内镜周转盘放入该内镜功能柜内,并自动将内镜周转盘从内镜功能柜中取出。该种内镜功能柜,可以节省劳力,提高工作效率。当作为洗消机时,可以提高洗消效率,避免人工洗消带来的不确定因素。

    一种超声、光声和荧光三模态成像系统

    公开(公告)号:CN108717045A

    公开(公告)日:2018-10-30

    申请号:CN201810569351.2

    申请日:2018-06-05

    Abstract: 本发明提供了一种超声、光声和荧光三模态成像系统,包括:激光光源模块、运动扫描模块、数据采集模块和控制处理模块;激光光源模块,用于向成像样本提供脉冲激光辐射和使成像样本产生光声与荧光信号,向数据采集模块和控制处理模块发送同步触发信号;运动扫描模块,用于依据预设运动参数对样本进行三维扫描;数据采集模块,包括用于采集成像样本产生的光声/超声/荧光信号;控制处理模块,用于接收脉冲激光光源的触发脉冲信号,以及使运动扫描装置根据控制指令对目标样本进行扫描,同时处理接收到的目标样本数据,将光声/超声/荧光图像进行融合得到多模态重建图像。本发明降低成像中扫描时间、提高成像系统的成像分辨率和成像速度。

    基于管体的裂纹检测方法、系统、设备及存储介质

    公开(公告)号:CN111189930A

    公开(公告)日:2020-05-22

    申请号:CN202010082651.5

    申请日:2020-02-07

    Abstract: 本发明实施例涉及信号处理技术领域,公开了基于管体的裂纹检测方法、系统、设备及存储介质。本发明实施例先获取管体的振动位移数据;基于每个阶次的弯曲模态的振动幅值以及相位角补偿对振动位移数据进行弯曲模态的分离,以得到分离出的每个阶次的弯曲模态;根据分离出的每个阶次的弯曲模态对管体进行裂纹检测操作。可见,本发明实施例在检测管体上裂纹时,将先依据各弯曲模态的振动幅值、相位角补偿的不同分离出单独的弯曲模态,再将以分离出的弯曲模态为基础进行裂纹检测操作,这大大提高了裂纹检测的准确性。

    基于深度学习的肿瘤光声图像快速重建方法及装置

    公开(公告)号:CN110880196A

    公开(公告)日:2020-03-13

    申请号:CN201911096094.6

    申请日:2019-11-11

    Abstract: 本发明实施例提供基于深度学习的肿瘤光声图像快速重建方法及装置,方法包括:通过k-Wave工具箱和迭代重建算法,获取稀疏采样下,不同数量、形状、大小、位置、光吸收系数及信噪比的肿瘤光声仿真数据集,通过光声实验补充实验数据集;构建端到端的SEU-Net;采用预训练策略及有监督的学习方法在肿瘤光声仿真数据集和实验数据集上递进式训练SEU-Net,依次实现迭代重建算法重建图像到高质量标签图像、初始光声信号图到高质量标签图像的重建任务,得到训练好的肿瘤光声图像重建模型;将目标肿瘤的初始光声信号图输入肿瘤光声图像重建模型,输出重建后的高质量肿瘤光声图像。可实现基于稀疏采样的快速、高质量的肿瘤光声图像重建。

    基于光声温度测量的光热治疗系统

    公开(公告)号:CN109008966A

    公开(公告)日:2018-12-18

    申请号:CN201810708381.7

    申请日:2018-07-02

    Abstract: 本发明实施例提供了一种基于光声温度测量的光热治疗系统,包括:脉冲激光器,与耦合光路连接,用于光声成像和光声温度测量;多模光纤,与耦合光路连接,用于将耦合光源传送至靶区;信号采集模块,与数据采集模块及脉冲激光器连接,用于采集信号;数据采集模块,与图像显示模块连接,用于采集数据;时序控制电路,与脉冲激光器连接,用于提供触发信号;图像显示模块,与激光器功率控制器连接,用于显示图像;连续激光器,与激光器功率控制器连接,用于加热活体组织;耦合光路,与连续激光器及脉冲激光器连接,用于将耦合光束;激光器功率控制器,与连续激光器连接,用于控制连续激光器的输出功率。本发明为治愈肿瘤提供了更好的技术保障。

    一种适用于外周血管成像的光声成像系统及方法

    公开(公告)号:CN107174208A

    公开(公告)日:2017-09-19

    申请号:CN201710374235.0

    申请日:2017-05-24

    Abstract: 本发明公开一种适用于外周血管成像的光声成像系统及方法。其中,所述系统包括:分别与激光器和多通道数据采集卡相连的触发器;激光器;包括光纤束、超声换能器和夹持器的扫描探头,光纤束包括多根光纤,一端与激光器相连,另一端平均一分二被夹持器对称地固定在超声换能器的两侧,以实现声光共轴。光纤束用于将激光器产生的激光照射到待扫描目标产生光声信号,超声换能器用于接收光声信号;可拆卸地安装扫描探头的机械臂,机械臂用于带动扫描探头对待扫描目标进行扫描;分别与超声换能器和上位机相连的多通道数据采集卡。本发明提供的适用于用于外周血管疾病诊断的光声成像系统及方法,提高了成像的安全性及准确性。

    一种结合光通量补偿的迭代量化光声成像方法

    公开(公告)号:CN114399562B

    公开(公告)日:2022-08-23

    申请号:CN202111653212.6

    申请日:2021-12-30

    Abstract: 本发明公开了一种结合光通量补偿的迭代量化光声成像方法,所述算法包括如下步骤:一、依据光声效应获取光声数据,并进行光声图像重建;二、根据重建图像换算得到光能量分布;三、初始化基于Monte Carlo仿真的模型;四、基于背景的先验知识设置仿真模型参数进行初次光通量补偿;五、更新仿真模型参数;六、基于更新的参数由Monte carlo计算得到光通量;七、计算第k次迭代得到的光能量沉积;八、计算测量得到的光能量沉积与迭代计算得到的光能量之间的误差ε,若误差足够小则停止迭代,输出此时的吸收系数,否则,更新吸收系数,转至步骤五继续迭代。本发明的算法实现了从光能量沉积图中定量恢复出组织中不同吸收体的吸收分布。

Patent Agency Ranking