-
公开(公告)号:CN115952731A
公开(公告)日:2023-04-11
申请号:CN202211640722.4
申请日:2022-12-20
Applicant: 哈尔滨工业大学
IPC: G06F30/27 , G06F30/17 , G06F119/14 , G06F113/06
Abstract: 一种风力机叶片主动振动控制方法、装置及设备,涉及风力发电技术领域,解决的技术问题为“如何使风力机叶片振动在有限时间收敛”,方法包括:采集风力机叶片结构参数;基于所述结构参数,建立风力机叶片状态空间模型;基于所述风力机叶片状态空间模型,定义第一控制误差和第二控制误差;对所述第一控制误差进行变换,得到变换误差;基于神经网络状态观测器,对所述风力机叶片状态空间模型进行观测得到观测量;根据所述第二控制误差、变换误差以及观测量定义目标函数,并根据所述目标函数得到控制参数;该方法采用有限时间预设性能理论设计误差变量并采用观测器进行观测,保证了风力机叶片稳定性和收敛时间有界,适用于风力机叶片振动控制场景。
-
公开(公告)号:CN114815785A
公开(公告)日:2022-07-29
申请号:CN202210637971.1
申请日:2022-06-07
Applicant: 哈尔滨工业大学
IPC: G05B23/02
Abstract: 一种基于有限时间观测器的非线性系统执行器鲁棒故障估计方法,它属于非线性系统鲁棒故障估计领域。本发明解决了现有的有限时间观测器在进行非线性系统的故障估计时,未考虑未知输入干扰的问题。本发明方法所采取的主要技术方案为:步骤一、建立含有执行器故障和未知输入干扰的非线性系统模型;步骤二、对非线性系统模型进行解耦获得两个降阶的子系统模型;步骤三、分别基于两个子系统模型进行有限时间观测器的设计;步骤四、求解设计的有限时间观测器的设计参数;步骤五、基于设计的有限时间观测器以及求解出的设计参数对执行器故障进行估计。本发明方法可以应用于非线性系统执行器故障估计。
-
公开(公告)号:CN115952731B
公开(公告)日:2024-01-16
申请号:CN202211640722.4
申请日:2022-12-20
Applicant: 哈尔滨工业大学
IPC: G06F30/27 , G06F30/17 , G06F119/14 , G06F113/06
Abstract: 一种风力机叶片主动振动控制方法、装置及设备,涉及风力发电技术领域,解决的技术问题为“如何使风力机叶片振动在有限时间收敛”,方法包括:采集风力机叶片结构参数;基于所述结构参数,建立风力机叶片状态空间模型;基于所述风力机叶片状态空间模型,定义第一控制误差和第二控制误差;对所述第一控制误差进行变换,得到变换误差;基于神经网络状态观测器,对所述风力机叶片状态空间模型进行观测得到观测量;根据所述第二控制误差、变换误差以及观测量定义目标函数,并根据所述目标函数得到控制参数;该方法采用有限时间预设性能理论设计误差变量并采用观测器进行观测,保证了风力机叶片稳定性和收敛时间有界,适用于风力机叶片(56)对比文件Gao, H (Gao, Han)等.Finite-timeattitude quantised control for rigidspacecraft.International Journal ofSystems Science.2018,全文.马广富等.组合体航天器有限时间超螺旋反步姿态控制.宇航学报.2017,第1169-1174页.张超;孙延超;马广富;李传江.挠性航天器预设性能自适应姿态跟踪控制.哈尔滨工业大学学报.2018,(04),第2-6页.赵贺伟;胡云安;杨秀霞;梁勇.考虑弹性振动的高超声速飞行器预设性能控制.振动与冲击.2017,(07),全文.
-
公开(公告)号:CN115540877B
公开(公告)日:2023-08-25
申请号:CN202211115386.1
申请日:2022-09-14
Applicant: 哈尔滨工业大学
Abstract: 一种考虑地球扁率的太阳光照系数确定方法,它属于天体物理及轨道动力学领域。本发明解决了采用现有方法计算太阳光照系数的精度低的问题。本发明方法采取的技术方案为:步骤S1、根据太阳和地球的几何关系计算地球到太阳方向单位向量eSun;步骤S2、根据卫星和地球的几何关系以及eSun确定卫星所处的区域,所述卫星所处的区域包括卫星在考虑扁率的地球的本影区、半影区、全影区和光照区;再根据卫星所处的区域确定太阳光照系数。本发明方法可以应用于天体物理及轨道动力学领域。
-
公开(公告)号:CN115081884B
公开(公告)日:2023-05-02
申请号:CN202210723636.3
申请日:2022-06-23
Applicant: 哈尔滨工业大学
Abstract: 一种分布式星上在线多对多任务规划方法,它属于服务航天器任务规划领域。本发明解决了现有方法生成方案的速度慢,动态方案调整的响应时间长的问题。本发明的方案为:步骤一、收集在轨服务的任务需求和计算时间要求,再计算内层拍卖最大迭代轮次参数;步骤二、基于计算出的内层拍卖最大迭代轮次参数,在各服务航天器燃料约束下对在轨服务的任务进行分配,得到所有任务执行顺序清单和变轨过程时长信息;步骤三、通过考虑变轨过程中摄动力的影响,对变轨过程中各阶段速度脉冲进行校正,根据所有任务执行顺序清单、变轨过程时长信息以及校正后的各阶段速度脉冲获得最终的规划方案。本发明方法可以应用于服务航天器任务规划。
-
公开(公告)号:CN114815785B
公开(公告)日:2023-04-07
申请号:CN202210637971.1
申请日:2022-06-07
Applicant: 哈尔滨工业大学
IPC: G05B23/02
Abstract: 一种基于有限时间观测器的非线性系统执行器鲁棒故障估计方法,它属于非线性系统鲁棒故障估计领域。本发明解决了现有的有限时间观测器在进行非线性系统的故障估计时,未考虑未知输入干扰的问题。本发明方法所采取的主要技术方案为:步骤一、建立含有执行器故障和未知输入干扰的非线性系统模型;步骤二、对非线性系统模型进行解耦获得两个降阶的子系统模型;步骤三、分别基于两个子系统模型进行有限时间观测器的设计;步骤四、求解设计的有限时间观测器的设计参数;步骤五、基于设计的有限时间观测器以及求解出的设计参数对执行器故障进行估计。本发明方法可以应用于非线性系统执行器故障估计。
-
公开(公告)号:CN112572834B
公开(公告)日:2021-08-31
申请号:CN202011423387.3
申请日:2020-12-08
Applicant: 哈尔滨工业大学
IPC: B64G1/24
Abstract: 本发明公开了一种考虑矩形视场的目标区域规避相对位姿一体化控制方法,涉及航天器在轨服务领域。本发明为了解决机动的可行空间较小问题,同时实现对航天器控制的优化,通过考虑航天器敏感器的实际四棱锥视场,最大程度的构建视场真实模型,建立相对位姿一体化运动学模型,构建约束姿态和禁止区域两种约束,分别设计吸引势函数和排斥势函数,使得系统状态在整个逼近的机动过程中满足约束姿态、禁止区域约束;设计位姿一体化控制律实现服务航天器逼近目标航天器的过程中能够到达期望位置的同时持续观测目标航天器以及规避目标航天器的探测。本发明适用于航天器在轨观测及规避的应用。
-
公开(公告)号:CN113156987A
公开(公告)日:2021-07-23
申请号:CN202110422593.0
申请日:2021-04-15
IPC: G05D1/08
Abstract: 结合双框架剪式力矩陀螺和飞轮的航天器执行机构及其控制方法,属于航天器姿态控制技术领域,解决了现有采用飞轮或单框架控制力矩陀螺对航天器态控制存在输出力矩小、响应慢或控制算法复杂,且计算量大的问题。本发明采用双框架剪式力矩陀螺驱动航天器进行姿态机动,以三个飞轮吸收双框架剪式力矩陀螺在驱动航天器姿态变换过程中产生的干扰力矩,通过调整DGSPCMG的两个框架角,使航天器始终在欧拉轴方向具备最大机动能力。本发明适用于航天器姿态控制。
-
公开(公告)号:CN115859731B
公开(公告)日:2023-06-27
申请号:CN202211623436.7
申请日:2022-12-16
Applicant: 哈尔滨工业大学
IPC: G06F30/23 , G06F111/04 , G06F111/06
Abstract: 一种风力机叶片约束层阻尼敷设方案优化方法、装置及设备,涉及风力发电技术领域,解决的技术问题为“如何实现风力机叶片更好的抑颤效果”,方法包括如下步骤:获取可敷设约束层阻尼设计变量;采用遗传算法对所述设计变量进行优化;基于优化后的设计变量,建立约束层阻尼敷设后的风力机叶片的有限元模型;根据所述有限元模型,对所述约束层阻尼敷设后的风力机叶片进行模态分析;判断模态分析结果是否满足优化结束条件,若满足则结束优化,否则重复上述步骤。该方法采用遗传算法,可以有效抑制随机风载下风力机叶片的挥舞和摆振振动,具有较好的应用前景,适用于风力机叶片约束层阻尼敷设场景。
-
公开(公告)号:CN116039960A
公开(公告)日:2023-05-02
申请号:CN202310144161.7
申请日:2023-02-21
Abstract: 火星大气进入过程轨迹跟踪制导系统及方法,解决了如何在尽量不损害制导律快速性的同时实现抗饱和效果的问题,属于火星探测技术领域。本发明包括:控制器根据高度跟踪误差e和抗饱和辅助变量χ,结合制导律获得期望控制量uc,制导律中的被控量y=e+χ,根据uc结合控制约束计算实际控制量u,根据实际控制量u按照参考轨迹进行制导;抗饱和辅助系统根据上一时刻的期望控制量uc和实际控制量u获取Δu,Δu=u‑uc,获取抗饱和辅助变量χ:本发明使得制导系统快速退出饱和工作区,在饱和消失时补偿量能够在有限时间内快速收敛至0。
-
-
-
-
-
-
-
-
-